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While systems biology aims to understand the working and dynamics of molecules inside the cell,
we mustn’t forget that cells, although alive, follow physical laws. Hence, biophysical aspects are
an important ingredient in modelling, and can also help building intuition regarding how processes
work in biology. Here, I will show two examples of biophysical modelling in bacteria: (1) signal
amplification and precise adaptation in chemotaxis, and (2) mechanosensitive ion channels and
their gating by membrane tension.
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I. BACTERIAL CHEMOTAXIS

Most types of cells are able to sense their environment and to migrate towards attractant chemicals (or away from
repellent chemicals). Examples include single-cell organisms such as bacteria, amoeba, and yeast, as well as cells
of our immune system, e.g. white blood cells, which chemotax towards sites of infections. Bacteria are particularly
well-characterised with respect to their chemotactic properties [2], well known for sensing tiny changes in chemical
concentration (down to 3 nM) and for adapting precisely to persistent changes.

To sense molecules in their environment, bacterial cells are equipped with different types of chemoreceptors, which
can bind attractants (nutrients such as sugars and amino acids) and repellents (certain metal ions). In addition,
they can also sense pH, oxygen, and temperature. Chemoreceptors exist in hundreds to thousands of copies and
cluster predominatly at the cell poles. Fig. 1 shows examples of receptor clusters, imaged by fluorescence microscopy
(panel A) [3] and electron microscopy (panels B and C) [4, 5]. These large clusters are known to act as “antennas”,
which amplify tiny changes in attactant concentration. This requires receptors to be coupled with their neighboring
receptors. In addition to the receptors, a small signal transduction pathway relays the stimuli to the rotary motors,
which drive the flagella for swimming. The pathway of Escherichia coli, an inhabitant of our intestines, is shown Fig.
2A.

In the E. coli chemotaxis pathway, active receptors, mainly Tar and Tsr, activate the receptor-bound kinase CheA to
autophosphorylate, and subsequently pass the phosphate group on to the two response regulators, CheY and CheB.
Phosphorylated CheY, i.e. CheY-P, diffuses through the cytoplasm and binds to the motors, inducing clockwise
rotation. This leads to tumbling of the cell and random reorientation. If the receptors are inactive, the kinase does
not autophosphoryate. Under such conditions, CheY is not phosphorylated, since phosphatase CheZ turns CheY-P
to CheY, which does not bind to the motor. The motors are hence in their default mode of counter clock-wise
rotation. This leads to bundling of the flagella, allowing the cell to run straight.

In order for cells to be able to sense new changes in chemical concentration, receptors and their signalling activity
adapt. An adapted cell has always the same probability of tumbling, irrespective of the external chemical concentra-
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FIG. 1: Receptor clustering from fluorescence microscopy (A) and electron microscopy (B,C).

tion. For this purpose, enzyme CheR methylates the cytoplasmic part of the receptors, which increases the receptor
signalling activity and the cell’s probability of tumbling. There is also enzyme CheB, which, when phosphory-
lated, demethylates the receptors. This decreases the signalling activity and increases the cell’s probability of running.

To study bacterial chemotaxis, researchers tracked swimming bacteria to record their runs and tumbles, or tethered
cells with their motor or flagella to a glass slide to observe their direction of rotation. While these are powerful
techniques, especially the latter, signalling can be measured in real time in living cells using fluorescence resonance
energy transfer (FRET) [2]. For this purpose, one requires a donor fluorophore to be attached to one type of molecule
in the pathway, and an acceptor fluorophore to another type of molecule as shown in Fig. 2A. These fluorophores are
genetically attached to the proteins, and need to have specific optical properties. The donor fluorophore is excited by
a laser at some wave length, and after excitation, emits the light again. However, when the acceptor comes close to the
donor due to interactions in the signalling pathway, the acceptor can accept the excitation energy, and emit the light
in a different, longer wave length. In bacterial chemotaxis, CheZ is fused to donor CFP and CheY is fused to accep-
tor YFP as shown in Fig. 2B. The ratio between the two fluorescence intensities is a measure of the signalling activity.

Using in vivo FRET, signalling and adaptation were quantified in detail [6]. In seminal work, step changes in
attractant MeAsp, a nonmetabolizable analogue of aspartate and stimulator of the Tar receptor, are applied.
Specifically, as shown in Fig. 3A cells are adapted to a background concentration of MeAsp and subsequently
exposed to a step increase. After adaptation, the step is removed and cells adapt again to the original background
concentration. Then, a new and larger step increase is applied and, after adaptation, is removed again and so
forth. Recording the initial responses in activity (from FRET) results in dose-response curves shown in Fig. 3B.
In this panel, filled symbols represent response to addition and open symbols represent response to removal of
attractant. Immediately visible from these dose-response curves is that receptors have a high absolute sensitivity at
zero concentration background (first addition curve), and become more and more insensitive at large background
concentrations due to the increase in receptor methylation level.

The bacterial chemotaxis proteins are easily modified by genetics, allowing researchers to make cells, which, e.g., only
express one receptor type, or receptors in specific fixed methylation-like states. The latter is possible since a glutamine
(Q) behaves similarly to a methylated glutamate (Em), since both are hydrophobic. Enzymes CheR and CheB also
need to be removed from the chromosome so the remaining Es are not methylated. Using this technique, Fig. 4
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FIG. 2: E. coli chemotaxis pathway (A) and FRET assay (B). (C) Illustration of Monod-Wyman-Changeux (MWC) model for
receptor cooperativity.

FIG. 3: Time-course data (A) and resulting dose-response curves (B) of adapting cells from FRET.

shows dose-response of cells expressing only Tar receptors in different “methylation states”, indicated by the different
amount of Es and Qs in the figure legend [7]. The figure also shows two dose-response curves of adapting Tar-only cells,
initially adapted to cells zero and 0.1 mM MeAsp concentration background. These experiments with Tar-only cells
show that there are large Hill coefficients for large methylation levels, pointing towards receptor-receptor cooperativity.

Recently, a model for signalling by cooperative receptors was proposed, which can describe the data very well (curves
in Figs. 3B and 4) [7, 8]. The main assumptions, shown in Fig. 2C, are that (1) a number N of receptors forms
a strongly coupled receptor complex, and that (2) receptors and hence complexes are two-state objects, which can
either be in the on state, which signals, or in the off state which does not signal. Fig. 5 shows the free-energy profile
of such a two-state receptor, describable by a single parameter ∆f = fon − foff, which is the free-energy difference
between the on and off states. The free-energy difference depends on ligand-receptor binding as well as receptor
methylation. Since attractant inhibits the activity, ligand binding is taken to be stronger in the off-state than in the
on-state of the receptor. Furthermore, receptor methylation favors the on-state, as methylation increases the activity.

Based on these assumptions, the free-energy difference is derived as follows, first for a single two-state receptor. As
shown in Fig. 6, such a two-state receptor can be in four different states: (1) On without ligand bound, (2) on with
ligand bound, (3) off without ligand bound, and (4) off with ligand bound. The energies of these four states are given
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FIG. 4: Dose-response curves of non-adapting mutants from FRET (with fitted curves from MWC model).

by

Eon (1)

EL
on = Eon − kBT ln

(
c

Kon
D

)

(2)

Eoff (3)

EL
off = Eoff − kBT ln

(
c

Koff
D

)

, (4)

where kBT the thermal energy, c is the attractant concentration, and Kon
D and Koff

D are the ligand dissociation
constants for the receptor in the on and off state, respectively. The ligand-bound energies emerge from the definition
of the binding free energy, e.g. for the on state, Ebind

on = EL
on − Eon and the experimentally known relation between

the ligand dissociation constant and the binding free energy Kon
D = c · eEbind/(kBT ). The deeper origin of the last

relation is in the competition between the energy release upon binding and the decrease in mixing entropy of the
ligand in solution. Note also that in Eq. 2 the ligand-bound energy is very negative and hence favorable for c >> Kon

D ,
is equal to ligand-unbound energy Eon for c = Kon

D , and is positive and hence unfavorable for c << Kon
D .

To calculate the probability that the receptor is on/active, we invoke Boltzmann statistics, which tells us that the
probability of finding the system in a state with energy Ei is pi = e−Ei/kBT /Z, where Z is the partition function
defined by Z =

∑

i e
−Ei/kBT [9, 10]. Using Boltzmann statistics in our example of the single receptor, the probability

for the receptor to be on is given by

pon =
e−Eon + e−EL

on

e−Eon + e−EL
on + e−Eoff + e−EL

off

(5)

=
e−fon

e−fon + e−foff
(6)

=
1

1 + e∆f
, (7)
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where we expressed all energies in units of kBT . In Eq. 6, the individual free energies are given by

fon = Eon − ln

(

1 +
c

Kon
D

)

(8)

foff = Eoff − ln

(

1 +
c

Koff
D

)

, (9)

and in Eq. 7, the free-energy difference is given by

∆f = ∆E + ln

(
1 + c/Koff

D

1 + c/Kon
D

)

(10)

with ∆E = Eon − Eoff. Result Eq. 7 can be further simplified assuming that binding is very unfavorable in the on
state, i.e. Kon

D is very large. In this case, we obtain

pon ≈ 1

1 + e∆E
(

1 + c
Koff

D

) . (11)

Now, if there are N receptors in a complex, which are so strongly coupled so they are always all on or off together,
then Eq. 5 reads

pon =
(e−Eon + e−EL

on)N

(e−Eon + e−EL
on)N + (e−Eoff + e−EL

off)N
(12)

=
e−Fon

e−Fon + e−Foff

(13)

=
1

1 + e∆F
(14)

≈ 1

1 + eN∆E
(

1 + c
Koff

D

)N
(15)

where

Fon = N

[

Eon − ln

(

1 +
c

Kon
D

)]

(16)

Foff = N

[

Eoff − ln

(

1 +
c

Koff
D

)]

(17)

and

∆F = N

[

∆E + ln

(
1 + c/Koff

D

1 + c/Kon
D

)]

. (18)

As evident from the receptor with specific methylation levels in Fig. 4, there are two regimes of signalling in the
data [8]. Demethylated receptors are highly sensitive and have a low activiy at low attractant concentration. In
contrast, methylated receptors are very insensitive, are very active at low attractant concentration, and exhibit large
cooparativity. In the following, we will show that these two regimes are indeed predicted by the model.

Regime I: Eon >> Eoff (∆E >> 0)
In this regime, we can neglect the number one in the denominator of Eq. 15, and obtain

pon =
e−N∆E

(
1 + c/Koff

D

)N
, (19)

leading to

pmax
on (c = 0) = e−N∆E . (20)



6

FIG. 5: Free-energy profile of a two-state receptor.

FIG. 6: A two-state receptor has four microstates.

To derive the inhibition constant Ki, i.e. the ligand concentration for which receptor activity is half of the maximal
activity, we set pon = e−N∆E/2 in Eq. 19 and solve for c. This gives Ki = Koff

D ln 2/N . Hence, a receptor complex is
N times more sensitive than a single receptor.

Regime II: Eon << Eoff (∆E << 0)
Using pon ≈ 1/2 in Eq. 15 results in

eN∆E
(
1 + c/Koff

D

)N
= 1 (21)

and finally Ki = Koff
D e|∆E|, which increases with methylation as |∆E| increases with methylation. Furthermore, for

c >> Koff
D , we obtain a Hill-type equation

pon ≈ 1

1 +
(

e∆E c
Koff

D

)N
, (22)

where the complex size N plays the role of the Hill coefficient.

Precise adaptation. As shown in Fig. 3A, adaptation to persistent stimulation, such as a step increase of attractant,
is very precise. The two-state model for signalling also proposes an elegant way of achieving this remarkable feature
[11]. Specifically, there are three different ways of looking at adaptation: (1) The free-energy landscape picture,
shown in Fig. 5, in which ligand favors (lowers) the off state minimum and subsequent methylation lowers the on
state minimum to re-gain correct ∆f . However, this does not explain how receptor methylation stops at the right
moment to achieve this. (2) The dynamics picture. Naively, we would be tempted to write down dynamics such as

dm

dt
= kR ·R · c · (mmax −m) − kB ·B · pon(c,m) ·m, (23)
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FIG. 7: Robust precise adaptation explained by a stable fixed point: An increase in c leads to a temporary decrease in A = pon
(1), but methylation rate is then larger than demethylation rate, bringing system back to adapted value (2). This value is a
stable fixed point of the underlying dynamics.

where rate of methylation depends, in addition on stimulus c, on number of available methylation sites (substrate) and
the rate of demethylation depends on number of methyl groups (substrate again). However, this model would produce
an adapted steady-state methylation level depending on c. The resulting activity could be anything, which is not
precise adaptation. The correct activity value could be achieved by fine tuning but this would not work robustly over
a wide range of c values. Instead, if the dynamics of receptor methylation only depend on the activity of the receptors,
and not on the number of available sites for methylation or demethylation, or the external attractant concentration,
adaptation always returns the activity back to the same adapted activity. For instance, the dynamics may be given
by

dm

dt
= kR(1− pon) − kBpon, (24)

where kR is the rate of methylation, including the concentration of CheR, and kB is the rate of demethylation, including
the concentration of active CheB. Evidently, Eq. 24 does not depend directly on the receptor methylation level or
attractant concentration, only indirectly on these through pon. At steady-state, i.e. after adaptation, dm/dt = 0 and
the right-hand side of Eq. 24 can be solved for the steady-state activity

p∗on =
kR

kR + kB
, (25)

which only depends on intrinsic rate parameters and hence is independent of external conditions of the cell. Hence,
the adapted activity is a stable fixed point of the underlying dynamics, at which methylation and demthylation rates
balance each other exactly (see Fig. 7).

Yet another way, (3), of looking at precise adaptation is via integral feedback control [12]. This is a well-known
engineering control mechanism to track the correct temperature in an oven or a room. Here, instead of adding
temperature when it happens to be too low, which leads to oscillations and hence instability, temperature is added
when the time integral of the temperature is too low (when it is too low on average), i.e. ∆Q ∼

∫
∆T (t)dt. Analogously,

in bacterial chemotaxis the number of added (or removed) methyl groups is proportional to the integrated error of
the activity. To see this, we linearise Eq. 24 by introducing fluctuations from steady state m(t) = m̄ + δm(t) and
pon(t) = p̄on + δpon(t). This leads to

d(δm)

dt
= −λδpon (26)

with relaxation rate λ = kR + kB . Integration finally demonstrates integral feedback control:

∆m =

∫

d(δm) = −λ

∫

δpon(t)dt. (27)
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FIG. 8: Crystal structures of open and closed conformations of MscL channel.

II. MECHANOSENSITIVE ION CHANNELS

The membrane of a cell with its embedded proteins plays an active role in regulating homeostasis of the cell. In
addition to receptors, bacteria have mechanosensitive ion channels which serve as a safety valve to protect the cell
against membrane rupture due to osmotic imbalance. In particular, when the bacterium is under osmotic shock, e.g.
by putting a cell into pure water, the resulting influx of water across the cell membrane results in a rapid increase
in membrane tension. These channels reply by opening and allowing ions and small molecules to leave the cell, thus
saving the cell from bursting. The Mechanosensitive Channel of Large Conductance (MscL) protein is a model system
which permits the study of how gating of the channel is tied to membrane deformation and external tension [10, 13, 14].

Figure 8 shows the open and closed states (as well as intermediates) obtained from X-ray crystallography, and Fig.
9 demonstrates that the probability for the channel to be in the open conformation decreases with the engineered
length of the hydrophobic tail of the lipids, which make up the membrane. This shows that the channel cannot be
considered as an isolated object but is gated by the membrane properties.

To understand how membrane tension can gate the opening and closing of an ion channel, we need to know that
ion channels, like other membrane embedded proteins, have a hydrophobic region of amino acids, which anchors the
protein in the membrane (Fig. 10). If the hydrophobic region is smaller than the width of the membrane as shown
in Fig. 9, the width of the lipid bilayer will shrink to match the protein region. In constrast, if the hydrophobic
region is larger than the width of the membrane, the width of the lipid bilayer will expand correspondingly. Hence,
the protein, simplified as a solid object, deforms the membrane around it. This costs some bending and stretching
energy, but is offset by the hydrophobic attraction between the hydrophobic lipid tails and hydrophobic protein region.

Before explaining the effects of gating by membrane tension, we will calculate the deformation of the membrane
around the channel and the energy of the channel-membrane system. While the membrane is a two-dimensional
sheet, we make the assumption that the channel radius is rather large, so that we can consider the approximate
one-dimensional case shown in Fig. 11A. Once this is achieved, we will approximate the two-dimensional solution by
wrapping the membrane around the channel as indicated in Figs. 11B and C.

In the one-dimensional case, the width of the hydrophobic region of the channel is W and the width of one lipid layer
is w(x), where x is the distance from the channel circumference. Now, introducing variable u(x) = w(x)− w0, which
measures the lipid deformation away from its equilibrium value w0, we can write the energy of the membrane as

E[u(x)] =
Kb

2

∫ ∞

R

(
d2u

dx2

)2

dx

︸ ︷︷ ︸

bending energy

+
Kt

2w2
0

∫ ∞

R

u(x)2dx

︸ ︷︷ ︸

stretching energy

, (28)

where notation E[u(x)] indicates that the energy is a functional of u(x). Furthermore, the first term on the right-
hand side is the bending energy and the second denotes the stretching energy of the lipid bilayer to match the protein
region. In order to compute the energy associated with the membrane deformation, we must find the profile u(x) that
minimizes this energy subject to the boundary conditions. When solving a differential equation like that one derived
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from Eq. 28, we have to say something about how the value of u(x) at the boundaries x = R, i.e. the channel radius,
and for x → ∞. At r = R, we assume strong hydrophobic “gluing”

u(R) =
W

2
− w0 = U, (29)

and that the derivative is zero

u′(R) = 0. (30)

Furthermore, we make the realistic assumption that for x → ∞ the membrane becomes the unperturbed membrane

u(∞) = 0 (31)

u′(∞) = 0. (32)

Minimization of the energy functional is analogous to minimizing an ordinary function by setting the derivative
equal to zero. Here, we set the functional derivative to zero and obtain a differential equation. To compute the
function drivative, we let the function u(x) undergo a small excursion η(x) by substituting u(x) → u(x) + ǫη(x) with
the boundary conditions on u that η vanishes at the boundaries. The functional derivative is defined as

∂E

∂u(x)
= lim

ǫ→0

E[u(x) + ǫη(x), u′′(x) + ǫη′′(x)]− E[u(x), u′′(x)]

ǫ
, (33)

with u′′ = d2u/dx2 and similarly for η′′. Denoting the integrand in Eq. 28 as f , that is E[u(x)] =
∫∞
R

f(u′′, u)dx, we
Taylor expand

f [u+ ǫη, u′′ + ǫη′′] ≈ f [u, u′′] + ǫ
∂f

∂u
η + ǫ

∂f

∂u′′ η
′′ (34)

with the first term being cancelled in Eq. 33 (by taking the difference in Eq. 33). We thus obtain the functional
derivative

∂E

∂u(x)
=

∫ ∞

R

(
∂f

∂u′′ η
′′ +

∂f

∂u
η

)

dx = 0 (35)

→ Kb

∫ ∞

R

u′′η′′dx +
Kt

w2
0

∫ ∞

R

u η dx = 0. (36)

FIG. 9: Open probability of MscL as a function of pressure for different membrane thicknesses.
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FIG. 10: Membrane thickness tries to match hydrophobic transmembrane protein region [13].

FIG. 11: Extending model from 1D to 2D (valid for large channel) [10].

We proceed by integrating by parts the first term, resulting in

Kbu
′′η′|∞R −Kb

∫ ∞

R

u′′′η′dx +
Kt

w2
0

∫ ∞

R

u η dx = 0. (37)

The first term is zero as η′ vanishes at the boundaries. We can integrate by parts once more and obtain

−Kbu
′′′η|∞R +Kb

∫ ∞

R

u′′′′ηdx +
Kt

w2
0

∫ ∞

R

u η dx = 0, (38)

where the first term vanishes again. Since this integral is zero for any η, we obtain the forth-order differential equation

Kb
d4u

dx4
+

Kt

w2
0

u = 0. (39)

with its solution delivering the membrane profile which minimizes the energy of the membrane around the channel.
To solve Eq. 39, we make an Ansatz of the form u = eΛx, leading to

Λ4 +
Kt

Kbw2
0

= 0 (40)

and

Λ = 4

√

Kt

Kbw2
0

× 4
√
−1. (41)

The 4th root of −1 can easily be calculated by using the Euler formula eiθ = cos θ + i sin θ, i.e. eiπ = −1 in our
case, and realising that there are an infinite number of solutions ei(2n+1)π = −1 for n = 0, 1, 2, .... However, the four
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distinct solutions are n = 0, 1, 2, 3, and 4, leading to angles π/4, 3π/4, 5π/4, and 7π/4, and

Λ1 = 4

√

Kt

Kbw2
0

eiπ/4 = 4

√

Kt

Kbw2
0

(√
2

2
+ i

√
2

2

)

(42)

Λ2 = 4

√

Kt

Kbw2
0

ei3π/4 = 4

√

Kt

Kbw2
0

(

−
√
2

2
+ i

√
2

2

)

(43)

Λ3 = 4

√

Kt

Kbw2
0

ei5π/4 = 4

√

Kt

Kbw2
0

(

−
√
2

2
− i

√
2

2

)

(44)

Λ4 = 4

√

Kt

Kbw2
0

ei7π/4 = 4

√

Kt

Kbw2
0

(√
2

2
− i

√
2

2

)

. (45)

Choosing the two solutions with negative real part for decay far away from the membrane-embedded channel, we
obtain

u(x) = C2e
Λ2x + C3e

Λ3x (46)

with constants C2 and C3 to be determined using the boundary conditions. Applying the boundary conditions leads
two algebraic equations

C2e
Λ2R + C3e

Λ3R = U (47)

Λ2C2e
Λ2R + Λ3C3e

Λ3R = 0, (48)

which can be solved and, plugged into Eq. 46, produce the final solution

u(x) = Ue−(
√
2/2)λ(x−R)

[

cos

√
2

2
λ(x−R) + sin

√
2

2
λ(x−R)

]

(49)

with

λ = 4

√

Kt

Kbw2
0

. (50)

To calculate the energy Eq. 28, we need the second derivate

u′′(x) = Uλ2e−(
√
2/2)λ(x−R)

[

sin

√
2

2
λ(x−R)− cos

√
2

2
λ(x−R)

]

(51)

and solve the resulting integral

E =
Kb

2

∫ ∞

R

dxU2λ4e−
√
2λ(x−R)

[

1− 2 sin

√
2

2
λ(x−R)× cos

√
2

2
λ(x−R)

]

(52)

+
Kt

2w2
0

∫ ∞

R

dxU2e−
√
2λ(x−R)

[

1 + 2 sin

√
2

2
λ(x−R)× cos

√
2

2
λ(x−R)

]

(53)

=
KtU

2

ω2
0

∫ ∞

R

dx e−
√
2λ(x−R) =

KtU
2

√
2λw2

0

. (54)

The total energy of the channel-membrane system with an applied membrane tension τ , e.g. due to osmotic pressure,



12

FIG. 12: Model results for gating by membrane tension [13].

is

EMscL = E + Etension (55)

= E0 +
KtU

2

√
2w2

0λ
︸ ︷︷ ︸

energy/length

2πR
︸︷︷︸

circumference

− τπR2
︸ ︷︷ ︸

loading device

(56)

= E0 +
1

2
KU22πR − τπR2 (57)

with

K =
√
2 4

√

K3
t Kb

w6
0

. (58)

In this equation, an overall additive constant E0 is left undetermined. Notice the second term is positive and proportial
to channel radius R, hence describing a line tension. In contrast, the third term is negative and proportional to R2,
as required for a proper surface tension. As a result, the total energy is parabolic with respect to R as shown in Fig.
11. For small tension, the closed state is favorable (lower) in energy, while for large tension, the open state is more
favorable.
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