Molecular biology of the chloroplast

Problem 1: CO₂ emissions

Problem 2: The Energy gap (14TW by 2050!)

Personalized energy concept: need fuel as well as electricity

Energy-independent home delivering the individual PE. Reproduced with permission from MIT and Technology Review.

Published in: Daniel G. Nocera; *Inorg. Chem.* **2009**, 48, 10001-10017. DOI: 10.1021/ic901328v Copyright © 2009 American Chemical Society

7/28/20

Solar Energy

$2H_2O \longrightarrow O_2 + "2H_2"$

" $^{"}2H_2" + CO_2 \rightarrow (CH_2O)$ Fuel

Solar Energy (100,000TW)

2H₂O

2H₂

06

+CO.

TYDE

0

Liquid fuel

Energy Total global (14TW)

www3.imperial.ac.uk/energyfutureslab/

Imperial's Artificial Leaf Project

Oxygenic Photosynthesis

- energy transduction process in plants, algae and cyanobacteria
- conversion of light energy into chemical energy
- CO₂ fixed into carbohydrate for plant growth and biomass
- oxygen vital for aerobic life

$$6CO_2 + 6H_2O \xrightarrow{\text{light}} C_6H_{12}O_6 + 6O_2$$

carbon dioxide

glucose

$$6CO_2 + 6H_2O \leftarrow C_6H_{12}O_6 + 6O_2$$

liberated

respiration

Some of nature's model water-splitters

Cyanobacteria (*Synechocystis* 6803)

Green algae (*Chlamydomonas reinhardtii*)

Plants (*Arabidopsis*, tobacco)

light microscopy

electron microscopy

Thylakoid membrane (site of Light reactions)

- chlorophyll
- light-harvesting
- electron transfer
- O₂ evolution
- ATP and NADPH production

Stroma (site of Dark reactions)

- Rubisco
- CO₂ fixation
- sugar and starch synthesis courtesy of John Gray

Structural view of the thylakoid complexes

Allen et al (2011) Trends in Plant Science 16: 645 - 655

Requirements for Calvin cycle in C3 plants:

3 ATP and 2NADPH are needed to fix 1 CO₂ into triose phosphate

i.e. ATP/NADPH ratio of 1.5 is required

How much ATP and NADPH is produced in the light reactions?

For every pair of electrons 6 protons are pumped ($H^+/e = 3$)

The formation of NADPH requires a pair of electrons

14H⁺ are thought to be needed by ATP synthase to make 3 ATP

4.67H⁺ are needed by ATP synthase to make 1 ATP

Therefore 1.29 ATP synthesised per NADPH

Linear electron flow produces too little ATP for Calvin cycle

Pathways of cyclic electron flow around PSI still not understood!

AA NADP⁺ NADPH (Fd) PGR5 PGR -PQ → Cyt b₆f Arabidopsis NDH ← PQ-PS

PS

Cvt b_cf

AA: antimycin A

Chlamydomonas

Jensen and Leister (2014) F1000 Prime Rep. 6:40

Fork models

Arvidsson and Sundby, 1999

Shimoni et al., 2005

Structural view of the grana In higher plants

Pribil et al (2014) J Exp Bot 65: 1955 - 1972

Possible routes for enhancing photosynthesis

Algal biofuels

Advantages:

•*Photoautotrophic growth (sun +CO₂)*

•Potential for carbon capture

•Many species available with different growth characteristics and 'biofuel' profile

•*Can grow on land and in water unsuitable for crop plants*

•*High yield of biomass (high Photosynthetic conversion efficiency)*

Challenges:

•Provision of water and nutrients

•Harvesting of biomass

•Contamination of open ponds

•Expense of closed systems

energy futures lab

Beer LL, Boyd ES, Peters JW & Posewitz MC (2009) Curr Opin Biotech 20: 264-271

Closed Bioreactors

Clemens Posten

Solix

Enhanced Biofuels

Subitec

Michael Borowitzka

Posten/Pulz energy futures lab

Open pond system

Cyanotech, Hawaii. Open pond systems produce Spirulina. (Image from Henrikson 2010)

Algal Biofuels

Gold rush for algae

The second of four weekly articles on biofuels describes how oil giants and others are placing their bets on algae.

Table 1	Potential oil yields per acre per year
Crop	Gallons of oil/acre/year
Soybeans	43
Sunflower	86
Canola	171
Jatrjopha	214
Palm oil	641
Microalgae	up to 6,000 (with future technology)

NATURE BIOTECHNOLOGY VOLUME 27 NUMBER 1 JANUARY 2009

\$10–20 per gallon from open ponds

\$1billion invested in Algal biofuels since 2007

energy futures lab

The algal 'feeding frenzy'

produce clean fuels, chemicals, foods and health science

 $\text{CO2} \rightarrow \text{Fuels}$ & Chemicals

SGI is harnessing photosynthetic microbes (i.e., algae) to produce a range of liquid

Low-value photosynthetic microbial biofuels are currently not viable

energy futures lab

Cotton et al (2015) Front.Bioeng.Biotechnol. 3:36.

On the bright side there might be something in it....

An economic and technical evaluation of microalgal biofuels

Table 1 Practical and theoretical yield maxima for microalgal biomass and oil production ^a										
Ph conve	otosynthetic rsion efficiency	Biomass energy	Biomass energy	Oil	Biomass prod.	Biomass yield	Oil yield	Residual biomass		
	(%)	(GJ ha ⁻¹ yr ⁻¹)	(MJ kg $^{-1}$)	(%)	(g m ⁻² d ⁻¹)	(T ha ⁻¹ yr ⁻¹)	(L ha ⁻¹ yr ⁻¹)	(T ha ⁻¹ yr ⁻¹)		
	2.1	1,677	22.98	25	20.0	73	19,837	55		
	6.4	5,101	27.95	50	50.0	183	99,390	92		
	6.5	5,220	22.98	25	62.2	227	61,400	170		
	6.5	5,220	27.95	50	51.2	187	100,943	93		
	8.0	6,424	22.98	25	76.7	280	75,570	210		
	8.0	6,424	27.95	50	63.0	230	124,237	115		
	10.0	8,030	22.98	25	95.9	350	94,462	262		
	10.0	8,030	27.95	50	78.6	287	155,297	143		

^aSee Supplementary Box 1 for full details on calculations and assumptions.

>500 ha in area

High value products (e.g., carotenoid) important income stream in early years

Biomass sold as feedstock

In later years, oil more profitable as prices increase

Internal rate of return over 30 years > 15%

Stephens E, Ross IL, King Z, Mussgnug J, Kruse O, Posten C, Borowitzka MA & Hankamer B (2010) Nature Biotechnology 28: 126-128

A biological route to solar hydrogen

$$\mathbf{2H}_{2}\mathbf{O} \xrightarrow{\text{light}} \mathbf{2H}_{2} + \mathbf{O}_{2}$$

$$2H_2O \xrightarrow{\text{light}} O_2 + 4H^+ + 4e^-$$
 Photosystem Two
 $4H^+ + 4e^- \longrightarrow 2H_2$ Hydrogenase

energy futures lab

Why Hydrogen?

Clean Fuel

 $2H_2 + O_2 \longrightarrow 2H_2O$

Climate Change

Energy Security

A biological route to solar hydrogen

energy futures lab

Photo-biological H₂ production in Green Algae

•1940s Hans Gaffron

Light induced transient H₂ production by certain types of darkadapted algae

•2000 Melis and co-workers

Sustained H₂ production for a few days using sulphur-depleted cultures of *C. reinhardtii*

2ml H₂/L/h

Adapted from Melis et al. 2000 Plant Physiol. 122(1)127-36

Sources of reductant for H₂ production

(1) PSII water splitting (Biophotolysis)

(2) Via type II NADH dehydrogenase (photofermentation)

(3) Via Pyruvate:ferredoxin oxidoreductase (dark fermentation) energy futures lab

Improving hydrogen yield through serendipity

Random mutagenesis/screening identified *moc1* mutant which has 10-fold better rate of hydrogen production (2% energy conversion efficiency) than WT

Serendipity: isolation of the *stm6/moc1* mutant

- •>5-fold better yield of hydrogen than WT
- •Increase in levels of triacylglycerides (TAG)
- •2% energy conversion efficiency
- MOC1 is involved in regulating transcription termination in mitochondrion – indirect effect on redox state of chloroplast

Kruse O et al (2005) J Biol Chem 280: 34170-34177

LIPID PRODUCTION (*stm6/moc1*)

Courtesy of Ben Hankamer and colleagues

energy futures lab

Imperial College London Rational approaches to improve biohydrogen production

- Select/engineer more oxygen-resistant hydrogenase enzymes

 (10-fold increase on overexpressing endogenous hydrogenase in *Chlorella* sp. DT)
- Increase flux of electrons going to hydrogenase
 (Fd-hydrogenase fusion *in vitro*, poorer Rubisco, over-express glucose transporter/feed Glc, manipulate competing fermentation pathways)
- Modulate oxygen levels in the cell (PSII mutants, downregulate WT PSII, enhance respiration, express Leg haemoglobin or pyruvate oxidase)
- Improve bio-reactor design and characteristics of algae
 (light-harvesting mutants with improved light penetration in culture, use
 fluctuating light to produce burst of hydrogen)
 energy futures lab

Dubini and Ghirardi (2015) Photosynth Res

Exploiting photosynthesis: electricity production from digitally printed cyanobacteria

Sawa, Fantuzzi, Bombelli, Howe, Hellgardt and Nixon (2017) Nature Commun. 8, 1327

Don't forget cyanobacteria: 'solar biorefineries' for producing chemicals

Savakis and Hellingwerf (2015) Curr. Opin. Biotechnol. 33:8-14

Isolation of fast-growing Singaporean strain (SSW07)

- SSW07 is member of Synechococcus genus
- Genome has been sequenced
- Grows faster than PCC7002 and as fast as UTEX2973 the current record holder
- Grows in sea water with added macronutrients
- Singapore has fairly constant temp all year round

Selao et al (unpublished)

Using melamine as an alternative N source to prevent contamination (Selao et al, submitted)

Figure 1 – Overview of melamine selection tool. **A.** Melamine utilization pathway reactions. One mole of melamine yields 6 mol ammonia and 3 mol carbon dioxide. **B.** Schematic view of the melamine utilization operon. Primers indicated were used to confirm full genome integration of the pathway. Different parts are not to scale **C.** 0.6% agarose gel of PCR reaction using primers stated in A. (see Supplemental Table 1 for sequences)

Growth on melamine (Selao et al, submitted)

Figure 2 – Growth of melamine utilizing strains in melamine containing medium **A.** Growth curve of WT Syn7002 and melamine utilizing strains **B.** Detail of cultures at 48 hours after inoculation

Hybrid microbial water-splitting catalyst – an alternative approach to use sunlight and water to grow bacteria

energy futures lab

Torella et al (2015) Proc Natl Acad Sci USA 112(8):2337–2342.