Molecular biology of the chloroplast

Overview of lectures:

*Solar energy conversion
% *“The Big Picture’
*Overview of photosynthesis and the chloroplast
*Enhancing photosynthesis
Algal biofuels and how algal chloroplasts produce
hydrogen fuel using water and sunlight
*Using cyanobacteria as solar biorefineries

02 Carbohydrate e The chloroplast genome
*Expression of high-value products in the
Heterotrophic ChIOrOpIaSt

cells

Photosynthetic
cells

CO, H,0




Problem 1: CO, emissions

Last 400,000 years: Atmospheric CO, (200-280 ppm) _
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Problem 2: The Energy gap (14TW by 2050!)




Personalized energy concept: < AGS Publications
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Energy-independent home delivering the individual PE. Reproduced with permission from MIT and Technology Review.
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Oxygenic Photosynthesis

* energy transduction process in plants, algae and cyanobacteria
* conversion of light energy into chemical energy

* CO, fixed into carbohydrate for plant growth and biomass

* oxygen vital for aerobic life

6CO, + 6H,0 =2, CcH,,0 + 60,

carbon dioxide glucose

6COZ + 6H20 — C6H12O6 + 602

energy
liberated

respiration



Some of nature’s model water-splitters

light microscopy

electron microscopy

Cyanobacteria
(Synechocystis 6803)

Green algae
(Chlamydomonas reinhardtii)

Plants
(Arabidopsis, tobacco)



Thylakoid membrane
(site of Light reactions)

® chlorophyll

® light-harvesting
® electron transfer
® O, evolution

®* ATP and NADPH
production

Stroma
(site of Dark reactions)

® Rubisco

® CO, fixation

® sugar and starch
synthesis e oriom oy



Structural view of the thylakoid complexes

A structural phylogenetic map for chloroplast photosynthesis TRENDS in Plant Science
John F. Allen, Wilson B. M. de Paula, Sujith Puthiyaveetil, Jon Nield

School of Biological and Chemical Sciences, Queen Mary University of London
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Requirements for Calvin cycle in C3 plants:
3 ATP and 2NADPH are needed to fix 1 CO, into triose phosphate

i.e. ATP/NADPH ratio of 1.5 is required
How much ATP and NADPH is produced in the light reactions?

For every pair of electrons 6 protons are pumped (H/e = 3)
The formation of NADPH requires a pair of electrons

14H™" are thought to be needed by ATP synthase to make 3 ATP
4.67H™ are needed by ATP synthase to make 1 ATP

Therefore 1.29 ATP synthesised per NADPH

Linear electron flow produces too little ATP for Calvin cycle



Pathways of cyclic electron flow around P3I still

not understood!
AA: antimycin A

Arabidopsis

Chlamydomonas

Jensen and Leister (2014) F1000 Prime Rep. 6:40



Helical model

Structural view of the grana
In higher plants

Mustardy and Garab, 2003

Fork models

end membrane

Arvidsson and Sundby, 1999

stroma lamellae
Shimoni et al., 2005
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Possible routes for enhancing photosynthesis
i\ Hzo /I NADPH jp

stroma
(n-side) K* K*H*
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K+ K*H*

lumen
(p-side) Ty N
2 H,0 O, +4 H*

PSII-LHCII supercomplex Cytochrome bgf PSI-LHCI supercomplex ATP synthase

Light harvestin Photochemist Ratio of ATP to Altemative PhOtrC;r;roc’:ﬁts:t;otg an
9 9 Y NADPH produced Electron flow fluctupating light

gE quenching
State transitions
PSII repair
ROS prevention
Regulate
ApH/membrane
potential

+ Alter size of antenna * Introduce different + Control amount of * Introduce electron

+ Synthesize pigments types of reaction cyclic and pseudo escape valves
that absorb in far-red center cyclic electron flow (Flv, PTOX)

* Introduce new * Modify ATP synthase

antennae

Cardona et al (2018) Essays Biochem 62: 85-94
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Current Opinion in Biotechnology

Advantages:
ePhotoautotrophic growth (sun +CO,)
ePotential for carbon capture

eMany species available with different growth
characteristics and ‘biofuel’ profile

eCan grow on land and in water unsuitable for
crop plants

eHigh yield of biomass (high Photosynthetic
conversion efficiency)

Challenges:

eProvision of water and nutrients
eHarvesting of biomass
eContamination of open ponds

eExpense of closed systems

energy futures lab

Beer LL, Boyd ES, Peters JW & Posewitz MC (2009) Curr Opin Biotech 20: 264-271



Imperial College

‘PostenfPulz
energy futures lab
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Cyanotech, Hawaii. Open pond systems produce Spirulina.
(Image from Henrikson 2010)

energy futures lab
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Table 1 Potential oil yields per acre per year

Crop Gallons of oil/acre/year
Scaling up pre oductmfom
tHf8 flask to cmillercia =l Soybeans 43
quantities of biofuels from
Ig aeis thereal challenge. Sunﬂower 86
Canola 171
Jatrjopha 214
Palm oil 641

Microalgae <____up to 6,000 (with future technology) >

NATURE BIOTECHNOLOGY VOLUME 27 NUMBER 1 JANUARY 2009

$10-20 per gallon from open

ponds
. $1billion invested in Algal
ThGOIdc!fryslzllfot,':.adlgbahew biofuels since 2007

oil giants and others are placing their bets on algae.

energy futures lab
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The algal feeding frenzy
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Solazyme, Inc. is the leading renewable oil and bioproducts
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produce clean fuels, chemicals, foods and health science C02 — F ue | S & C h em ica Is

SGl is harnessing photosynthetic microbes (i.e.. algae) to produce a range of liquid
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currently not viahle

A iy
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Cotton et al (2015) Front.Bioeng.Biotechnol. 3:36.

energy futures lab
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An economic and technical
evaluation of microalgal biofuels

>500 ha in area

High value products (e.g.,

Table 1 Practical and theoretical yield maxima for microalgal biomass and oil production?

Photosynthetic Biomass  Biomass Biomass Residual CaI‘OtenOid) impOI‘tant

conversion efficiency energy energy QOil prod. Biomass yield Oil yield biomass . .
(%) (GJ halyrl) (MIkg)) (%) (gm2dY) (Thalyrl) (Lhalyrl) (T halyrl) income stream in early years
2.1 1,677 2298 25 200 73 19,837 55
6.4 5,101 27.95 50  50.0 183 99,390 92 Biomass sold as feedstock
6.5 5220 2298 25 622 227 61,400 170
6.5 5220 2795 50  51.2 187 100,943 93 .
8.0 6,424 2298 25  76.7 280 75,570 210 In later years, oil more
8.0 6,424  27.95 50  63.0 230 124237 115 profitable as prices increase
10.0 8030 2298 25 959 350 94,462 262
10.0 8030  27.95 50 786 287 155,297 143

Internal rate of return over

aSee Supplementary Box 1 for full details on calculations and assumptions.

30 years > 15%

Stephens E, Ross IL, King Z, Mussgnug J, Kruse O, Posten C, Borowitzka MA &
Hankamer B (2010) Nature Biotechnology 28: 126-128

energy futures lab
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A biological route to solar hydrogen

light

2H20 > 2H2 + 02

2H,0 ot O, + 4H* + 4e- Photosystem Two

4H* + 4e- > 2H, Hydrogenase

energy futures lab




Imperial College
Why Hydrogen?

Clean Fuel

2H2 +02 — 2H20
Climate Change

Energy Security

UAFURN HYDROGEN 154111

W, o

energy futures lab
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A biological route to solar hydrogen

DI D2  Local C2-axis

Cyt h559 Cytoplasm

light

2H,0 . 2H, + O,

2H,0 9", 0, + 4H* + 4e- Photosystem ||

4H* + 4e- % 2H, [FeFe]- hydrogenase

energy futures lab
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Photo-biological H, production in Green Algae

*1940s Hans Gaffron

Light induced transient H,
production by certain types of dark-
adapted algae

N
o

W
(o]
L B |

Photosynthesis

Respiration

—r
o

Activity, mmol O, (mol Chl)" s’
N
o

«2000 Melis and co-workers
Sustained H, production for a few
days using sulphur-depleted
cultures of C. reinhardltii

2ml H,/L/h

—
()]
o

—
n
o

H
o
T T T

Gas volume collected, mL
[e+]
o

o
—

Ts0 100 150
Sulfur deprivation, h

o

Adapted from Melis et al. 2000 Plant Physiol. 122(1)127-36



Imperial College

sources of reductant for H, production

Starch

/\ 4.67H*
A

NADH Pyruvate ADP ATP
l 2H* H,
NADH NAD*

STROMA

--------------------- -

1/2H,0 1/40,+ H* —— 2H* > 4.67 H*

(1) PSII water splitting (Biophotolysis)
(2) Via type Il NADH dehydrogenase (photofermentation)

(3) Via Pyruvate:ferredoxin oxidoreductase (dark fermentation

energg/ futures lab
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Improving hydrogen yield through serendipity
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Random mutagenesis/screening identified moc7 mutant which has 10-fold better
— rate of hydrogen production (2% energy conversion efficiency) than WT



Imperial College

serendipity: isolation of the s&m6/moc7mutant

H, PRODUCTION (stm6/moc1)

A — StmG} -
500 - — WT S-depleted TAP S
—~ 400
o
3
5 3007 490%
E 200+ *Hz production
T 100 stops after 167 h
100%
0 . : : . :
50 100 150 200 250
lllumination time (h)

300

e>5-fold better yield of hydrogen than WT

eIncrease in levels of triacylglycerides (TAG)

*2% energy conversion efficiency
*MOC1 is involved in regulating transcription termination in

mitochondrion - indirect effect on redox state of

chloroplast

LIPID PRODUCTION (stm6/moc1)

beta-carotene
sterol esters

unknown band

free fatty acids

free sterols
chlorophyll a/b

O 24 48 72 96 120 hr post sulphur depletion
11T 14 15 15 14 14 cells/ml (x 109)

Courtesy of Ben Hankamer
and colleagues

energy futures lab

Kruse O et al (2005) J Biol Chem 280: 34170-34177
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Rational approaches to improve biohydrogen
production

« Select/engineer more oxygen-resistant hydrogenase enzymes

(10-fold increase on overexpressing endogenous hydrogenase in Chlorella
sp. DT)

* Increase flux of electrons going to hydrogenase

(Fd-hydrogenase fusion in vitro, poorer Rubisco, over-express glucose
transporter/feed Glc, manipulate competing fermentation pathways)

 Modulate oxygen levels in the cell

(PSIl mutants, downregulate WT PSII, enhance respiration, express Leg
haemoglobin or pyruvate oxidase)

* Improve bio-reactor design and characteristics of algae
(light-harvesting mutants with improved light penetration in culture, use

fluctuating light to produce burst of hydrogen )

energy futures lab
Dubini and Ghirardi (2015) Photosynth Res
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Exploiting photosynthesis: electricity production from
digitally printed cyanobacteria
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energy futures lab

Sawa, Fantuzzi, Bombelli, Howe, Hellgardt and Nixon (2017) Nature Commun. 8, 1327
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Don't forget cyanobacteria: ‘solar hiorefineries’ for producing
chemicals

D-lactate

Hyaluronic acid

Free fatty acids

ther value-added compounds

Cyanobacterial cell

Savakis and Hellingwerf (2015) Curr. Opin. Biotechnol. 33:8-14
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Isolation of fast-growing Singaporean strain (SSW07)
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(700 pnE.m2.s1, 38°C, 160 rpm, 1% CO,)

J

\ (~500 pE.m2.s1, 38°C, 160 rpm, 1% CO,)

J

= SSWO07 is member of Synechococcus genus

= Genome has been sequenced

= Grows faster than PCC7002 and as fast as
UTEX2973 the current record holder

= Grows in sea water with added macronutrients

= Singapore has fairly constant temp all year
round

Selao et al (unpublished)
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Figure 1 — Overview of melamine selection tool. A. Melamine utilization pathway reactions. One mole of melamine yields
6 mol ammonia and 3 mol carbon dioxide. B. Schematic view of the melamine utilization operon. Primers indicated were
used to confirm full genome integration of the pathway. Different parts are not to scale C. 0.6% agarose gel of PCR reaction
using primers stated in A. (see Supplemental Table 1 for sequences)
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Figure 2 — Growth of melamine utilizing
strains in melamine containing medium
A. Growth curve of WT Syn7002 and
melamine utilizing strains B. Detail of
cultures at 48 hours after inoculation
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Torella et al (2015) Proc Natl Acad Sci USA 112(8):2337-2342.
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