Part libraries for complex synthetic biology

Dr Tom Ellis January 2019

Lecture Content

- Beyond BioBricks: scaling parts
- Promoter design & libraries
- Part design with the RBS Calculator
- Dealing with local sequence context
- Terminator libraries & design
- Transcription factor libraries
- CRISPRi repressors

Learning Objectives

- To explain methods to generate part libraries
- To understand how small RNA parts can be designed using mathematical methods
- To introduce the issue of context dependency
- To show solutions to scaling regulators
- To introduce CRISPRi methods

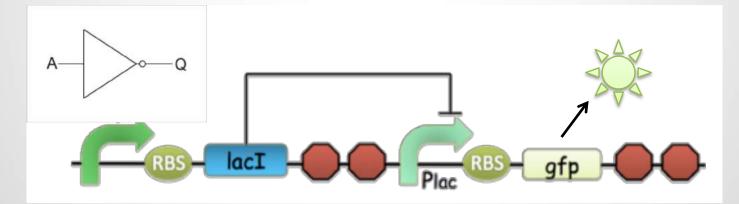
The iGEM Parts Registry

http://parts.igem.org/Main_Page

- 20000+ BioBrick-formatted parts
- But questionable quality and data unreliable

tools	catalog repository assembly p	rotocols help search	BBa_	logir	ı		
Registr	y of Standard Biologic	al Parts					
Promoter	rs/Catalog/Ecoli/Multiple						
roteins forms th romoter. These	tion factors (other than the sigma factor). For example e basis of a nor gate, the presence of either or both re promoters are useful if, for example, you are looking n of a gene must be dependent on multiple environme	epressors is sufficient to produce a to build logic gates, or if you are lo	a low output fro	m the	+ Τ		
							M
Name	Description	Promoter Sequence	Positive Regulators	Negative Regulators	Length	Doc	
	Description Lux cassette right promoter	Promoter Sequence	Positive Regulators	Negative Regulators	Length 68	Doc 1263	Status It's
BBa_11051			Positive Regulators	Negative Regulators			Status It's
BBa_11051 BBa_112006	Lux cassette right promoter	tgttatagtcgaatacctctggcggtgata	Positive Regulators	Negative Regulators	68	1263	Status It's complicate
BBa_I1051 BBa_I12006 BBa_I12036	Lux cassette right promoter Modified lamdba Prm promoter (repressed by 434 cl) Modified lamdba Prm promoter (cooperative	tgttatagtcgaatacctctggcggtgata	Positive Regulators	Negative Regulators	68	1263 798 927	Status It's complicate In stock
BBa_I1051 BBa_I12006 BBa_I12036 BBa_I12040	Lux cassette right promoter Modified lamdba Prm promoter (repressed by 434 cl) Modified lamdba Prm promoter (cooperative repression by 434 cl) Modified lambda P(RM) promoter: -10 region from	tgttatagtcgaatacctctggcggtgata attacaaacttcttgtatagatttaacgt tttcttgtatagatttacaatgtatcttgt	Positive Regulators	Negative Regulators	68 82 91	1263 798 927	Status It's complicate In stock
BBa_I1051 BBa_I12006 BBa_I12036 BBa_I12040 BBa_I14015	Lux cassette right promoter Modified lamdba Prm promoter (repressed by 434 cl) Modified lamdba Prm promoter (cooperative repression by 434 cl) Modified lambda P(RM) promoter: -10 region from P(L) and cooperatively repressed by 434 cl.	tgttalagtcgaatacctctggcggtgata	Positive Regulators	Negative Regulators	68 82 91 91	1263 798 927 1018	Status It's complicate In stock In stock
Name BBa_I1051 BBa_I12006 BBa_I12036 BBa_I12040 BBa_I14015 BBa_I14016 BBa_I1714924	Lux cassette right promoter Modified lamdba Prm promoter (repressed by 434 cl) Modified lamdba Prm promoter (cooperative repression by 434 cl) Modified lambda P(RM) promoter: -10 region from P(L) and cooperatively repressed by 434 cl P(Las) TetO	tgttalagtcgaatacctctggcggtgata	Positive Regulators	Negative Regulators	68 82 91 91 170	1263 798 927 1018 857	It's complicate In stock In stock In stock In stock

SynBERC, Addgene & BIOFAB


The alternative to iGEM is professional registries:

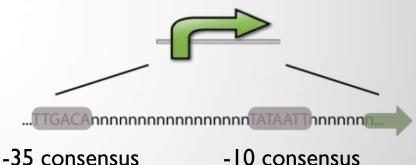
- SynBERC: a registry for some US synthetic biology
- Addgene: company to aid sharing published plasmids
- BIOFAB: a US effort to make professional parts

Our example: Inverter Network

- Constitutive expression of a repressor that shuts off a downstream promoter
- Basic 'wire' device in synthetic gene networks
- Logic function: NOT

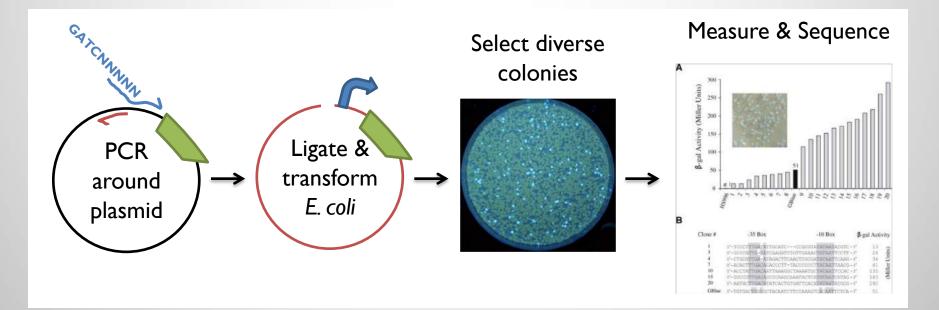
Scaling: why can't we make 100 working inverters?

Bacterial systems: E. coli


• Unless stated all content in this lecture is for parts and devices that work in *E. coli*

Parts and devices made for *E. coli* may not work in other bacteria and almost always don't work in eukaryotes like yeast and mammalian cells ... and vice versa

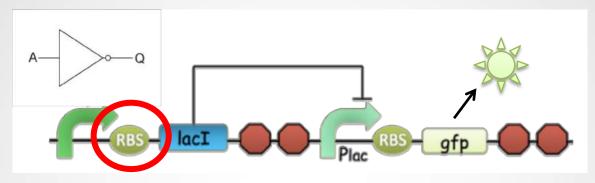
Constitutive Promoters


- Promoter design is a straightforward example of how to make a library of parts
- For constitutive E. coli promoters there are 2 main methods:
- (a) Conservative mutation of consensus sequences

(b) Liberal mutation of sequences
 between the consensus sites using 'N' bases
 'Synthetic Promoter Library' method: Jensen & Hammer 1998

Constitutive Promoter Libraries

- Constitutive E. coli promoters are short enough to be encoded on a primer
- Library can be made in a few days at low cost


Anderson Promoter Library

- Example of promoter library made by method #I
- <u>http://parts.igem.org/Promoters/Catalog/Anderson</u>

Anderson promoter collection

Identifier 🖂	Sequence ^a	Measured Strength ^b
BBa_J23119	ttgacagctagctcagtcctaggtataatgctagc	n/a
BBa_J23100	ttgacggctagctcagtcctaggtacagtgctagc	1
BBa_J23101	tttacagctagctcagtcctaggtattatgctagc	0.70
BBa_J23102	ttgacagctagctcagtcctaggtactgtgctagc	0.86
BBa_J23103	ctgatagctagctcagtcctagggattatgctagc	0.01
BBa_J23104	ttgacagctagctcagtcctaggtattgtgctagc	0.72
	tttacggctagctcagtcctaggtactatgctagc	0.24
BBa_J23106	tttacggctagctcagtcctaggtatagtgctagc	0.47
	tttacggctagctcagccctaggtattatgctagc	0.36
BBa_J23108	ctgacagctagctcagtcctaggtataatgctagc	0.51
BBa_J23109	tttacagctagctcagtcctagggactgtgctagc	0.04
BBa_J23110	tttacggctagctcagtcctaggtacaatgctagc	0.33
BBa_J23111	ttgacggctagctcagtcctaggtatagtgctagc	0.58
BBa_J23112	ctgatagctagctcagtcctagggattatgctagc	0.00
BBa_J23113	ctgatggctagctcagtcctagggattatgctagc	0.01
BBa_J23114	tttatggctagctcagtcctaggtacaatgctagc	0.10
BBa_J23115	tttatagctagctcagcccttggtacaatgctagc	0.15
	ttgacagctagctcagtcctagggactatgctagc	0.16
BBa_J23117	ttgacagctagctcagtcctagggattgtgctagc	0.06
	ttgacggctagctcagtcctaggtattgtgctagc	0.56

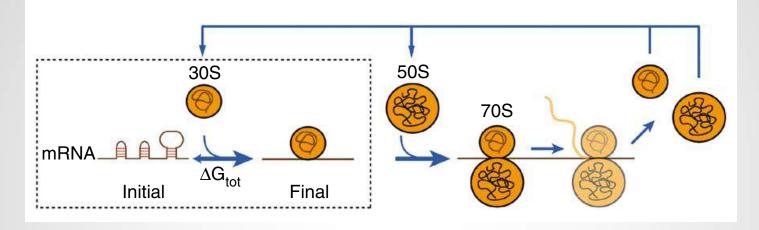
Ribosome Binding Sites

Ribosome Binding Sites

4		9

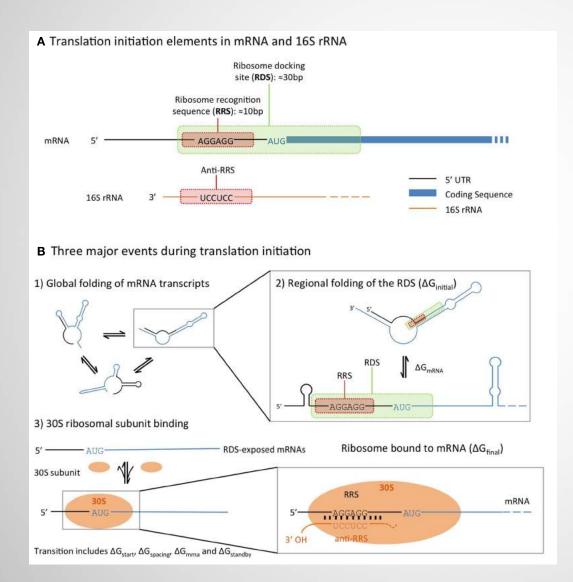
 To make a protein in a cell you need a promoter, an
 RBS, a CDS and a terminator. Ribosomes bind to the RBS and begin translation at the start codon,

which is ATG on the registry. Your choice of RBS will affect protein expression levels. RBSs are small so can be synthesized or assembled. We have have about 150 RBS parts on the Registry. The most used is BBa_E0034. There are many RBS collections on the Registry:


Anderson By expression E. coli Collection level

Eukaryotic

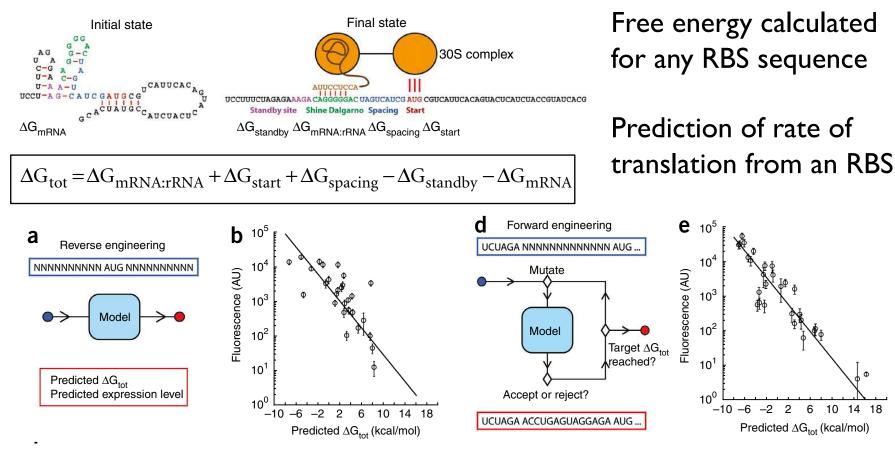
Promoter Ribosome binding site Start Codon ...TCTAGAGAAAGANNNGANNNACTAGATG...


A part so small that possibly it could be designed....

Designing Ribosome Binding Sites

- Rate of translation largely determined by rate of translation initiation
- Initiation rate determined by interactions between RBS sequence on the mRNA and the part of the I6S rRNA within the ribosome
- Therefore rate is largely determined by RNA:RNA interactions

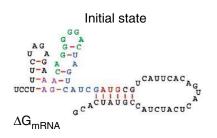
RNA:RNA interactions at **RBS**


Rate of initiation at RBS can be estimated by calculating the rate of binding between mRNA and rRNA sequences

Gibbs free energy (ΔG) can be calculated for any DNA or RNA sequence because we know the energy of base-pairing

To do this use NUPACK http://www.nupack.org/

Ribosome Binding Calculator


Salis et al. Nature Biotech 2009

https://salis.psu.edu/software/

* sort of works 50% of the time

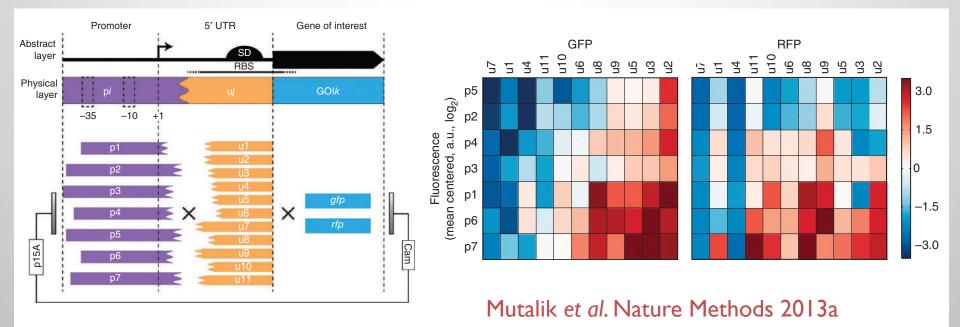
CONTEXT: RBS is not an isolated part

 Δ G mRNA can only be calculated if RNA sequence upstream and downstream of RBS is included (>50 nt)

So sequence either side of RBS part influences the RBS

This feature is known as 'Context Dependency'

i.e. the RBS strength is dependent on the local sequence context


Upstream: (promoter) and scar

Downstream: gene CDS

So... RBS strength <u>will</u> change when put in front of a different CDS

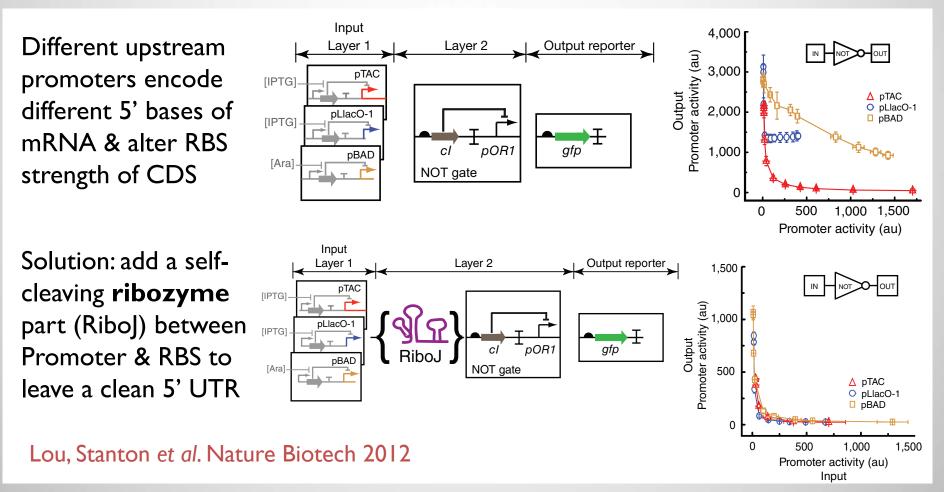
CONTEXT: a problem for synthetic biology

- Small DNA parts are like words affected by the surrounding sentence: e.g. "please set the table with a set of plates"
- Combining many different promoters, RBS and CDS parts doesn't lead to predictable gene expression output

Alleviating Context

To overcome context you either have to:

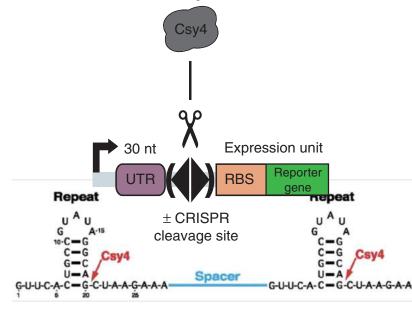
(a) Understand enough so you can predict its effect

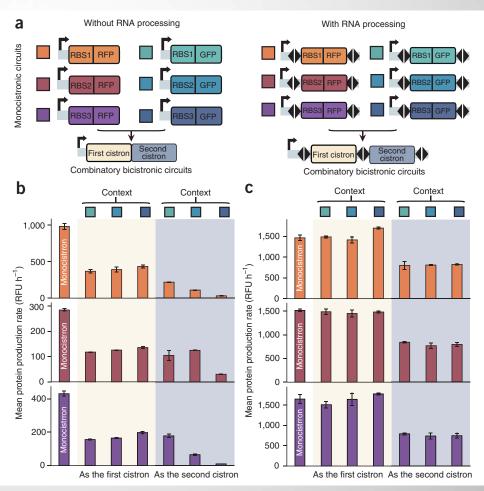

 RBS Calculator uses this approach: models effect of upstream and downstream part sequence on RBS part

(b) Use parts that remove context (i.e. insulators)

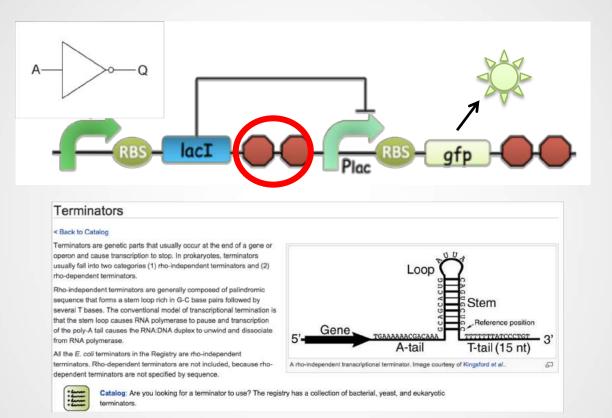
Three methods were developed for this...

Alleviating Context: RiboJ Method


... but many important promoters don't end at the +1 site Regulated promoters often have sequence after +1 that get transcribed

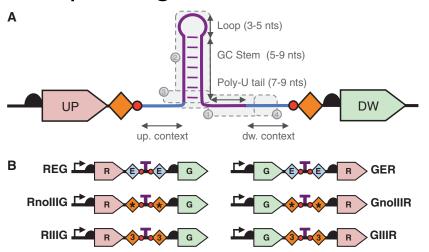

Alleviating Context: Csy4 Method

... but it would be a cumbersome to put RiboJ parts everywhere Instead we can cut the mRNA using sequence-specific enzyme **Csy4**

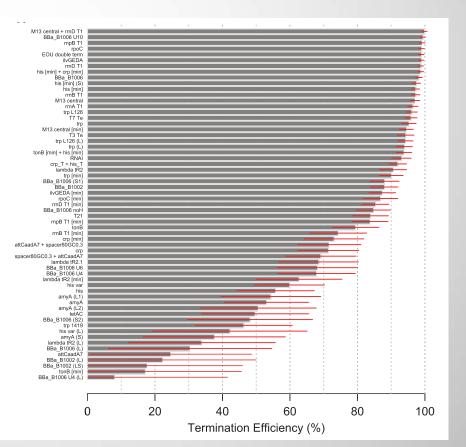

Csy4 enzyme expressed in *E. coli* will cut a short specific RNA sequence that makes a hairpin fold

Qi, Haurwitz et al. Nature Biotech 2012

Transcription Terminators

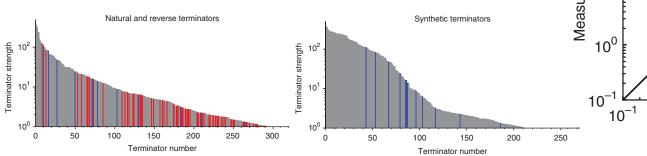


- Terminators: boring parts but a challenge for cloning
- Not a good idea to repeatedly use the same one

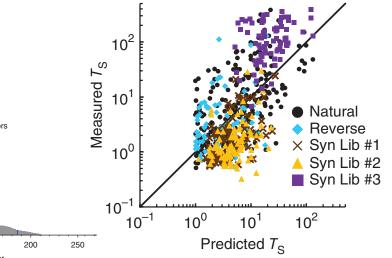

Transcription Terminator Libraries I

BIOFAB designed and characterised 100s of terminators & used data to model further design

- Terminator is an RNA stem/loop
- Measure by placing between reporter genes

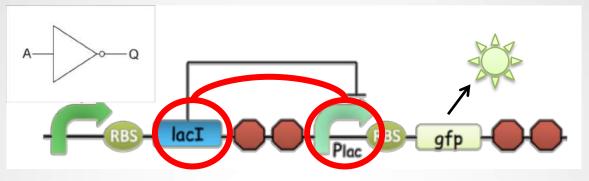

Cambray et al. Nucleic Acids Research 2013

Transcription Terminator Libraries 2


Voigt lab characterised 500+ terminators and used data to make a 'terminator calculator'

- Measured natural and designed terminators
- Derived a biophysical model of RNA folding to explain efficiency
- Equation is 'somewhat' predictive

$$T_{\rm S} = 1 + \frac{1}{B_1 e^{\beta_1 \Delta G_{\rm L}} + B_4 e^{\beta_4 (\Delta G_{\rm B} + \Delta G_{\rm A} - \Delta G_{\rm U})} (1 + B_1 e^{\beta_1 \Delta G_{\rm L}})}$$



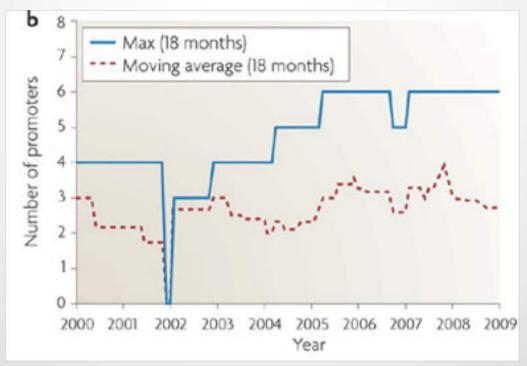
We're halfway there...

- Constitutive Promoter Libraries
- RBS Designs and RBS Libraries
- Tricks to account for 'context' effects
- Terminator Libraries

• Time to now get a bit more complex...

Regulators & Regulated Promoters

These are the key pairs of parts that enable logic


TetR and pTet (-) Lacl and pLac (-) LuxR and pLux (+) AraC and pAraBAD (+/-) cl and pORI(-) OmpR-P and pOmpC (+)

Classic transcription factor/promoter pairs behave differently

For scalable logic we need hundreds of predictable pairs

Regulators & Regulated Promoters

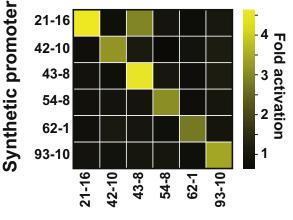
Complexity of devices can't increase without a large **orthogonal set** of predictable regulators and promoter pairs

Purnick & Weiss. Nature Reviews Mol Cell Biol. 2009

I: Modular transcription factors: Zinc Finger Proteins

Zinc Finger Transcription Factors can be designed to recognise different promoters

Khalil et al. made a great set of synthetic TFs paired to synthetic promoters

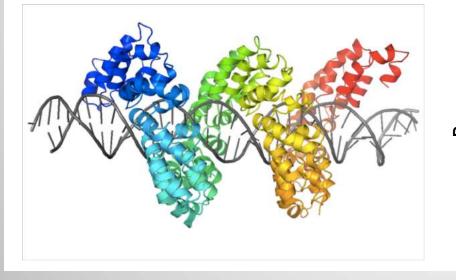

...but they don't work in *E. coli* (only yeast)

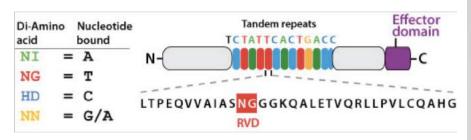
	SYNTHETIC TRANSCRIPTION FACTOR		
ATc ─ TetR ⊥ -──────────────────────────────	Operates ZF ARRAY	on 	
Inducible sTF c <i>pGAL1</i>	assette	ZF operator	

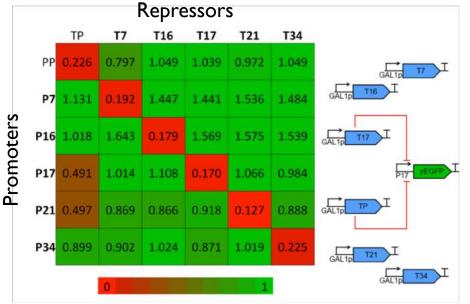
martin
$\begin{array}{c} 6 & 32 - 1 & 6 & 32 - 1 \\ 1 & 1 & 1 & 1 \\ \end{array}$
5'- GCT 3'- CGA TCG A-5'

	ZINC FINGER RESIDUES			SYNTHETIC PROMOTER OPERATORS			
sTF	Finger 1	Finger 2	Finger 3	EcoRI	Binding sequence	BamHI	
13-6	TNQKLEV	VRHNLQR	QHPNLTR	GAATTC	a GAA GAT GGT g	GGATTC	
14-3	APSKLDR	LGENLRR	DGGNLGR	GAATTC	g GAC GAC GGC a	GGATTC	
21-16	RNFILQR	QGGNLVR	QQTGLNV	GAATTC	a TTA GAA GTG a	GGATTC	
36-4	GRQALDR	DKANLTR	QRNNLGR	GAATTC	c GAA GAC GCT g	GGATTC	
37-12	RNFILQR	DRANLRR	RHDQLTR	GAATTC	t GAG GAC GTG t	GGATTC	
42-10	TGQILDR	VAHSLKR	DPSNLRR	GAATTC	a GAC GCT GCT c	GGATTC	
43-8	RQDRLDR	QKEHLAG	RRDNLNR	GAATTC	a G <mark>AG TGA GGA</mark> c	GGATTC	
54-8	NKTDLGR	RRDMLRR	RMDHLAG	GAATTC	a TGG GTG GCA t	GGATTC	
55-1	DESTLRR	MKHHLGR	RSDHLSL	GAATTC	c TGG GGT GCC c	GGATTC	
62-1	TGQRLRI	QNQNLAR	DKSVLAR	GAATTC	g GCC GAA GAT a	GGATTC	
92-1	DSPTLRR	QRSSLVR	ERGNLTR	GAATTC	a GAT GTA GCC t	GGATTC	
93-10	APSKLKR	HKSSLTR	QRNALSG	GAATTC	c TTT GTT GGC a	GGATTC	
97-4	RQSNLSR	RNEHLVL	QKTGLRV	GAATTC	a TTA TGG GAG a	GGATTC	
129-3	TAAVLTR	DRANLTR	RIDKLGD	GAATTC	c GGG GAC GTC a	GGATTC	
150-4	KGERLVR	RMDNLST	RKDALNR	GAATTC	g GTG TAG GGG t	GGATTC	
151-1	IPNHLAR	QSAHLKR	QDVSLVR	GAATTC	t GCA GGA GGT g	GGATTC	
158-2	DKTKLRV	VRHNLTR	QSTSLQR	GAATTC	t GTA GAT GGA g	GGATTC	
172-5	MKNTLTR	RQEHLVR	QKPHLSR	GAATTC	a GGA GGG GCT c	GGATTC	
173-3	SAQALAR	QQTNLAR	VGSNLTR	GAATTC	a GAT GAA GCT g	GGATTC	

Khalil, Lu, et al. Cell. 2012

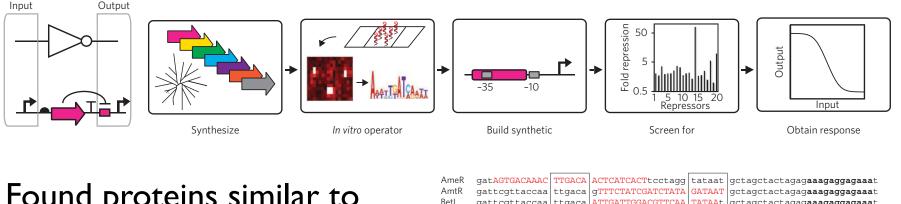

Synthetic transcription factor


2: Modular transcription factors: TAL Effectors


TAL Effector Proteins can be designed to bind specifically to any DNA sequence

Blount et al. made a great set of synthetic TFs paired to synthetic promoters

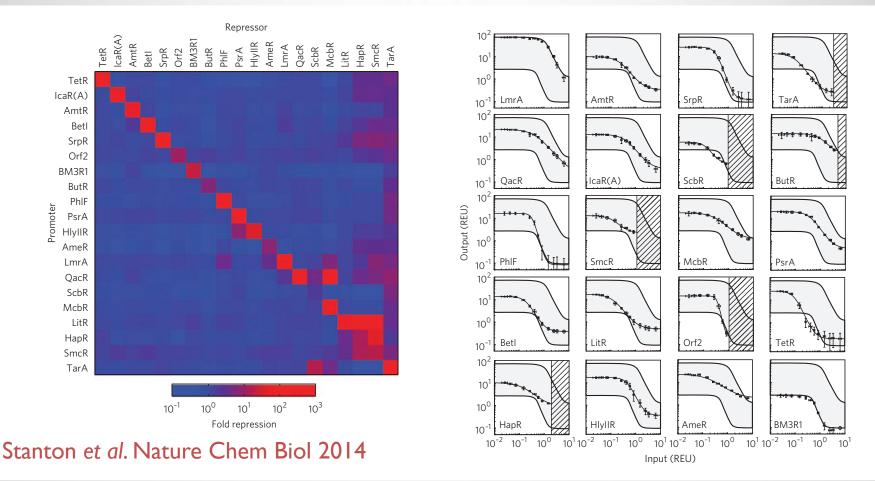
...but they don't work in *E. coli (again!)*



Blount et al. Unpublished Data

3: 'Part Mining' for Orthogonal Regulators

To get an orthogonal set of repressors and promoter pairs for *E. coli* Stanton *et al.* 'mined' DNA diversity from microbe genome sequences



Found proteins similar to TetR from sequence databases, synthesised them and worked out what DNA sequence they bind

AmeR	gatAGTGACAAAC	TTGACA	ACTCATCACT tcctagg	tataat	gctagctactagag aaagaggagaaa t
AmtR	gattcgttaccaa	ttgaca	gTTTCTATCGATCTATA	GATAAT	gctagctactagag aaagaggagaaa t
Betl	gattcgttaccaa	ttgaca	ATTGATTGGACGTTCAA	TATAAt	gctagctactagag aaagaggagaaa t
BM3R1	gattcgttaccaa	ttga <mark>CG</mark>	GAATGAACGTTCATTCC	Gataat	gctagctactagag aaagaggagaaa t
ButR	gattc <mark>GTGTCACT</mark>	TTGACA	GCAGTGTCACtcctagg	tataat	gctagctactagag aaagaggagaaa t
HapR	gattcgttaccaa	ttgaca	gctagctcTTATTGATT	TTTAAT	CAAATAAtactagagaaagaggagaaa
HlyllR	gattcgttaccaa	ttgac <mark>A</mark>	TATTTAAAATTCTTGTT	TAAAat	gctagctactagag aaagaggagaaa t
IcaR	gattcgttaccaa	ttgaca	aTTCACCTACCTTTCGT	TAGGTT	AGGTTGTtactagagaaagaggagaaa
LitR	gattcgttaccaa	tTGACA	AATTTATAAATTGTCAg	tataat	gctagctactagag aaagaggagaaa t
LmrA	gattcgttaccaa	ttgaca	actggtggtcgaatcaa	GATAAT	AGACCAGTCACTATATTTtactagaga
McbR	gattcgttaccaa	ttgaca	ATAGAAAGATCTGTCTA	tataat	gctagctactagag aaagaggagaaa t
Orf2	gattcgttaccaa	ttgaca	CTAACTGCTGTTCAGTT	AGGTTg	ctagc aaagaggagaaa tactagatgg
PhIF	gattcgttaccaa	ttgac <mark>A</mark>	TGATACGAAACGTACCG	TATCGT	TAAGGTtactagagaaagaggagaaat
PsrA G	GAACAAACGTTTGA	TTGAca	gctagctcagtcctagg	tataat	gctagctactagag aaagaggagaaa t
QacR	gattcgttaccaa	ttgaca	gctagctcagtcctaCT	TTAGTA	TAGAGACTGAGCGGTCGGTCTATAtac
ScbR	gattcgttaccaa	ttgaca	gctagctATCATACCGC	TATAAT	GGTATGTTtactagagaaagaggagaa
SmcR	gattcgttaccaa	ttgaca	TTATTGATAAATCTGCG	TAAAAT	gctagctactagag aaagaggagaaa t
SrpR	gattcgttaccaa	ttgaca	gctagctcagtcctagg	tATATA	CATACATGCTTGTTTGTTTGTAAACta
TarA	gattcgttaccaa	ttgaca	gctAAACATACCGTGTG	GTATGT	TC tagctactagag aaagaggagaaa t
TetR	tcagtgatagaga	ttgaca	TCCCTATCAGTGATAGA	tataat	gagcactactagag aaagaggagaaa t

3: 'Part Mining' for Orthogonal Regulators

73 TetR-family repressors identified, 16 show strong specific repression Project yielded 16 orthogonal NOT gates (TetR plus 15 new ones)

CRISPR – a 'game-changer'

CRISPR = <u>Clustered Regularly Interspaced</u>
 <u>Short Palindromic Repeats</u>

- Bacterial immune system where RNA sequences related to phages are made and guide a DNA-cutting enzyme (e.g. Cas9) to cut any DNA that matches the 'guide' RNA sequence
- Together CRISPR guide RNAs and Cas9 cut DNA

CRISPR interference (CRISPRi)

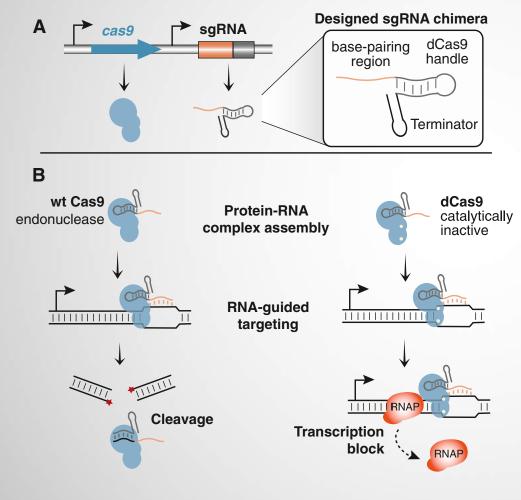
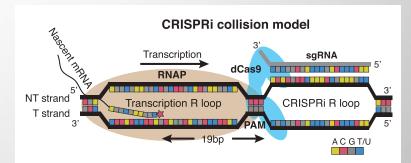
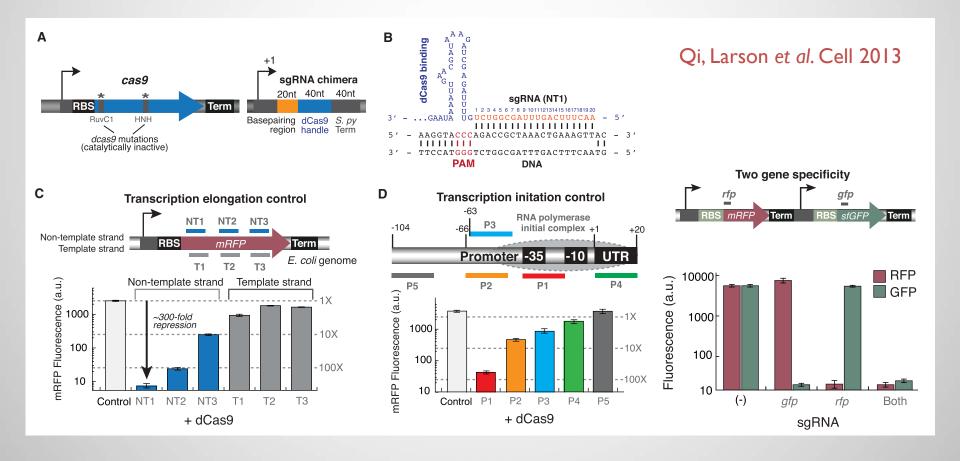
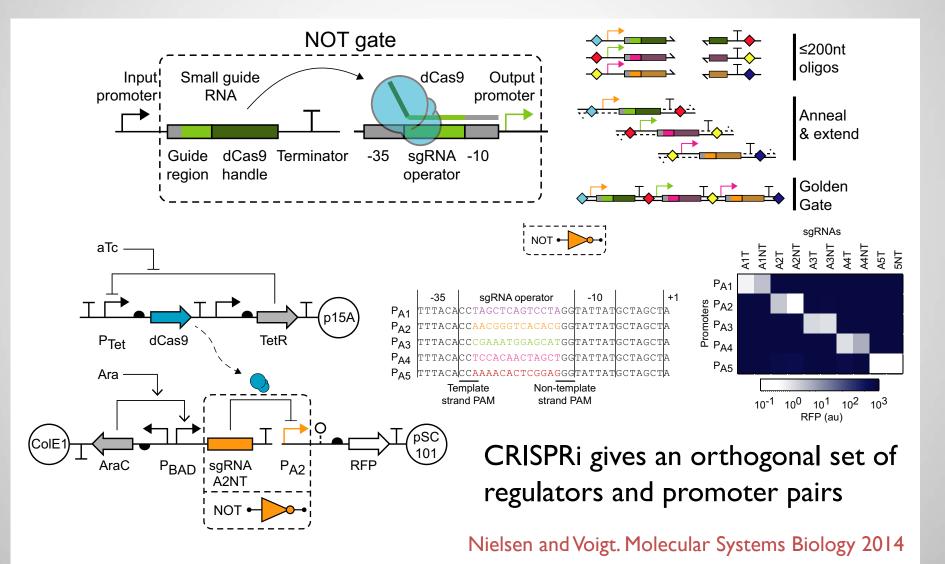



Figure 1. Design of the CRISPR Interference System

CRISPR/Cas is an RNA-guided DNA cutting system


Cas9 enzyme binds to a synthetic guide RNA (sgRNA) which matches a DNA target

dCas9 is deactivated Cas9: mutation means it binds DNA & represses instead of cutting



Guiding dCas9 for CRISPRi

Sequence-specific repression can be seen when guide RNAs target dCas9 to: (a) elongating non-template strand or (b) core promoter template strand

Scalable Regulation with CRISPRi

Scalable Inverter Networks

- lacI RBS Plac **I6** TetR-related TF-100+ promoter pairs\ constitutive ZF-TFs/ TALES in yeast **RBS** custom design promoters 10000+ dCas9 options using RBS Calculator **RiboJ** part BCD method gives 50+ 600+ measured or Csy4 sites modular RBS parts terminators to remove 5' context
 - Two terminator design models

Summary

- We now have 100s of parts for each key position in genetic networks
- Short parts can be (somewhat) designed
- Context issues present a challenge
- 'Mining' for parts yields orthogonal pairs
- We now have enough parts to rationally make dozens of different inverters in *E. coli* and Yeast
- CRISPRi is making life even easier

Example Exam Questions

- How do you make and characterise promoter and terminator libraries?
- How does the RBS Calculator work?
- What is context dependency and how it can be tackled?
- Why are orthogonal regulators important and give examples of these?

Key References

Original Research

The RBS Calculator Salis et al. Nature Biotech 2009

RiboJ Insulators Lou, Stanton *et al.* Nature Biotech 2012

Set of TetR-family logic gates Stanton *et al.* Nature Chem Biol 2014

Key References

REVIEWS

Principles of Gene Circuit Design Brophy and Voigt. Nature Methods 2014

How different RBS Calculators work Reeve et al. Frontiers in Bioengineering & Biotechnology 2014

Context dependency Cardinale and Arkin. Biotechnology Journal 2012

CRISPRi development Qi, Larson et al. Cell 2013

Other References

BIOFAB Context Assessment Mutalik et al. Nature Methods 2013a

Csy4 Insulators Qi, Haurwitz et al. Nature Biotech 2012

BIOFAB Terminators Cambray et al. Nucleic Acids Research 2013

Voigt Lab Terminators Chen, Lui, Nielsen *et al.* Nature Methods 2013

Zinc Finger Transcription Factors for yeast Khalil, Lu, et al. Cell. 2012