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Modelling in Biology 

 
• Exponential Growth 

 
 

• Logistic Growth 
 
 

• First-Order Biochemical Reactions 
 

• Quasi-steady state approximation 
 
 

• Taylor Expansions 
 

• Euler Method 
 
 

• Euler-Maruyama Method 
 

• Stochastic master equation  
If in a cell the number of copies of a certain molecular species is small (e.g. 
DNA), the concentration cannot be considered a continuum anymore and its 
discreteness cannot be ignored. As a result, the description of the time 
evolution of concentration becomes coarser. The system has no memory of 
the past, but can only depend on present conditions. Therefore, creation and 
destruction reactions occur with some probability per unit time (proportional to 
reaction rates). The master equation tries to describe this phenomenon, by 
formulating probabilistically the reaction kinetics.  

 So the master equation describes the evolution of probability distribution.  
• Emergence of deterministic laws 

It is possible to obtain the moments for the time evolution of the probability 
distribution without actually solving the master equation. For example, the 
mean number of molecules n can be calculated with the sue sum rom n=0 to 
n=+∞ of n times the probability of having n (n*Pn). 

• Poisson distribution 
Is a discrete probability distribution that describes the probability that a 
number of events occurs in a fixed period of time, assuming the events occur 
with known average rate and independently of previous events. This 
assumption is often fulfilled in biological systems (e.g. basal expression of a 
protein independent of other regulators or the occurrence of spontaneous 
mutations in DNA). In Poisson distribution, the variance is equal to the mean, 
so it only depends on one parameters (on the contrary to a Gaussian 
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distribution, where you need two parameters; indeed for large averages a 
Gaussian with same variance and mean is a good approximation for Poisson) 
If you derive the steady state distribution of the master equation, it’s 
poissonian (rates of production and degradation per molecule are constant 
and do not depend on number of molecules, not historical). 
 

• Gillespie algorithm 
This is a Monte-Carlo simulation that describes the individual stochastic 
trajectories.  

 
Biophysics 
 

• Sensing and Signalling 
Information theory: mutual information between input and output 
 

• Bacterial chemotaxis: biased random walk up a chemical gradient.  
Sensing occurs by detecting indirectly temporal gradient. Signal = current – 
past measurement. 
An attractor-specific chemoreceptor forms a complex with the adaptor protein 
CheW and the histidine kinase CheA. CheA phosphorylates the response 
regulator CheY, and this phosphorylated form, CheY-P, stimulates tumbling 
by interacting with the flagellar motor. When chemoattractant binds receptor, 
CheA activity is suppressed, the levels of CheY-P decrease, and the 
bacterium is less likely to tumble. Adaptation results from the methylation of 
receptor by CheR, which increases CheA activity, promoting CheY 
phosphorylation. The methylation state of the receptor is balanced by the 
demethylation enzyme CheB. CheZ acts to dephosphorylate CheY-P. The 
dynamics of receptor methylation are considered slow (minutes) relative to 
CheY phosphorylation (milliseconds) . 

 
- Signal amplification by receptor clustering 
- MWC model (4 microstates for receptors) 
- Two signalling regimes 
- Precise Adaptation (free-energy landscape, dynamics and integral 

feedback control) 
- The Perfect Monitor 

• Kinetic proofreading 
 
Dynamics in Gene Expression 
 

• Models of Gene regulation 
- Epigenetics, diauxi, bistability 

How to get bistability: positive feedback with cooperativity or double 
negative feedback with cooperativity (toggle switch). 
Diauxie =  Greek word coined by Jacques Monod to mean two growth 
phases. 
 
Multistability = the capacity to achieve multiple internal states in 
response to a single set of external inputs (the defining characteristic 
of a switch). 
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- E.g. Lac System (Ozbudak et al., 2004) 

In Lac system there is both bistability (expression of LacY permease 
results in even more lactose uptake) and hysteresis (there is memory: 
LacY persist as long as it is not diluted by cell division).  
The Lac operon has threshold switches. It is induced if [TMG] < 3uM 
and it is induced if [TMG]>30uM. In between the two values, the 
system is hysteretic and bistable. If below or above those values, the 
system is monostable (plot the graph to clearly visualise this). In the 
bistable region, you can observe a bimodal distribution of cells 
expressing GFP, as there are stochastic fluctuations that bring some 
cells to the induced attractor and some other cells to the uninduced 
attractor.  The monostable and bistable states are separated by a 
saddle-node bifurcation.  
 
The all-or-none induction of the E. coli lac operon has been a 
paradigmatic example for bistability in gene regulatory networks for 
many decades. However, so far bistability has been experimentally 
demonstrated only for induction with gratuitous inducers such as TMG 
or IPTG, but not for induction with the natural inducer lactose. In fact, 
based on theoretical analysis of the lac circuit architecture, Savageau 
(2011) argued that bistability is unlikely to occur in the natural lactose 
utilization system, but that overexpression of the LacI repressor would 
favor the emergence of bistability. The Bettenbrock group at the Max 
Plank Institut  has recently published a paper in the Biophysical journal 
where they report to have tested and confirmed this prediction by 
combining single cell analysis with deterministic computational 
modelling (Zander et al., 2017). 
In this sense, their experiments can be viewed as opposite to those 
conducted by Ozbudak et al. (2004), who showed that TMG-
induced lac operon expression can be driven from a bistable into a 
monostable regime by successive dilution of LacI repressor. Guided by 
the computational model, our results support the view that lac operon 
induction in the wild-type strain is graded (monostable) rather than all-
or-none (bistable), which is consistent with the Savageau design 
principle as well as with previous experimental analysis of lactose-
induced lac operon expression in E. coli. 
 

• Mathematics of bistable gene switch  
Remember the “existence and uniqueness theorem”: if f(x) is smooth enough, 
then solutions exist and are unique. One of the consequences of this is that in 
a phase portrait every trajectory does not intersect other trajectories (because 
solutions are unique) expect in steady states.  
 
Autocatalytic feedback model of gene expression: the activity of a gene is 
directly induced by two copies of the protein for which it codes. 
The system has three fixed point if a<1/2b 
The system experiences a saddle-node bifurcation at the critical value a=1/2b 
The system can act like a biochemical switch, but only if the mRNA and 
protein degrade slowly enough (degradation rates must satisfy ab<1/2). If this 
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is the case, there are two steady states: one at the origin (gene is silent) and 
one where x and y are large, meaning that gene is active and sustained by 
the high level of protein. The stable manifold of the saddle acts like a 
threshold: it determines whether the gene turns on or off, depending on the 
initial value of x and y. 
 
When plotting phase portraits, remember that trajectories approach the origin 
tangent to the slow eigendirection, defined as the direction spanned by the 
eigenvector with the smallest eigenvalue.  
Phase curves (or phase trajectories) are solutions of: 
 

dx/dy = f(x,y)/g(x,y) 
 General eigensolution: 

x(t) = c1eλ1tv1 + c2eλ2tv2 
 

• Competence/Excitability 
Excitability: relatively small, threshold-crossing perturbations trigger large-
amplitude excursions in phase space that eventually return the system to its 
initial state. ComK ‘master’ transcription factor activates expression of a suite 
of genes necessary for competence, including the comG operon in B. subtilis. 
ComK also activates its own expression. Upon entry into stationary phase, 
comK is expressed at a basal level, but is also rapidly degraded by the MecA 
complex. ComS peptide competitively inhibits ComK degradation by the MecA 
complex. Expression of ComS thus favours induction of competence by 
allowing ComK levels to build up sufficiently to enable full ComK activation by 
positive autoregulation. ComK indirectly represses ComS, generating an anti-
correlation between PcomG and PcomS activities. The regulation of comS is, 
however, known to be complex, having several transcriptional inputs and so 
occurs with a delay. 

A fundamental question is whether initiation of competence is stochastic or 
affected by memory of previous events. Two consecutive competence events 
can be observed in a single cell lineage, showing that cells retain the potential 
to re-initiate competence. In fact, re-initiation occurred with a frequency not 
significantly different from the overall competence frequency, that is repeated 
competence events are neither favoured nor suppressed. These results are 
consistent with a stochastic and memory-less model for competence initiation 
and duration.  

In the Elowitz model, noise can induce escape from the otherwise stable 
vegetative state and turn the system ‘on’ via the ComK positive feedback. On 
a slower timescale, this initiates the ComS- mediated negative feedback. 
Reduction in ComS levels eventually shuts the system back ‘off’ through an 
increase in ComK degradation, returning the cell to its vegetative state. In this 
way, ComS has a dual role in the system: on the one hand it is necessary to 
initiate competence, by blocking degradation of ComK and allowing positive 
autoregulation to take effect; on the other hand, repression of ComS is 
necessary for exit from competence, because reduction in ComS levels 
favours ComK degradation by MecA.  
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• Turing Pattern 

 
Advanced Modelling 
 

• Transcriptional Network Motifs  
 
Shen-Orr et al. (2002) highlighted three motifs that are most prevalent in 
the E. coli network: the single input module (SIM), a dense overlapping 
regulon (DOR), and the feed-forward loop (FFL).The three motifs enable 
the E. coli network to be broken down into its basic building blocks. They then 
showed that there is a single layer of five DORs connecting most TFs to their 
targets. The DORs are joined together by global regulators. SIMs and FFLs 
are positioned at the outputs of the DORs. What is apparent is that 
the E. coli regulatory network has a shallow structure and contains only a few 
long cascades for flagella biogenesis and several metabolic systems. 
 

a) FFL: consists of a primary TF that regulates a secondary TF, and 
together, both regulate a final target. 
A FFL is coherent if the direct effect of the primary TF on the target 
gene has the same sign as its net indirect effect through the secondary 
Example: Arabinose operon 

 
b) SIM: comprises a group of genes targeted by a lone TF.   

SIM motifs occur in systems of genes that function stoichiometrically to 
form a protein assembly or a metabolic pathway. They proposed that a 
single TF could maintain the proportions of transcribed operons at a 
steady state, and that differences in activation thresholds of targets 
could provide a temporal program of gene expression. An example of a 
SIM motif involves ArgR, an E. coli TF that uniquely regulates five 
target operons encoding genes for arginine biosynthesis. 
 

c) DOR: a close-knit layer of overlapping interactions between genes and 
a group of input TFs 
 

• Network Motifs for Different Responses 
Signaling pathways can be embedded in networks using positive and negative 
feedback to generate more complex behaviours — toggle switches and 
oscillators — which are the basic building blocks of the exotic, dynamic 
behaviour shown by nonlinear control systems.  
 

a) Linear 
b) Hyperbolic 
c) Sigmoidal: modification of hyperbolic case (b), where the 

phosphorylation and dephosphorylation reactions are governed by 
Michaelis-Menten kinetics 
 
 

• Cooperativity and Ultrasensitivity 
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• Imprecise Adaptation (Homeostasis) 
 
 

• Precise Adaptation 
By supplementing the simple linear response element (case a of network 
responses above) with a second signaling pathway (through a species X 
in the drawn image behind) it is possible to create a response mechanism that 
exhibits perfect adaptation to the signal. Perfect adaptation means that 
although the signaling pathway exhibits a transient response to changes in 
signal strength, its steady-state response Rss is independent of S. Such 
behaviour is typical of chemotactic systems, which respond to an abrupt 
change in attractants or repellents, but then adapt to a constant level of the 
signal.  

 
- Integral Feedback Control: is a basic engineering strategy for ensuring 

that the output of a system robustly tracks its desired value 
independent of noise or variations in system parameters. 
 

- Incoherent Feed-Forward 
 

• Oscillators 
They are limit cycles, that is steady states with purely imaginary eigenvalues. 
Often produced by bifurcations (like Hopf). 
 

- Negative Feedback Loops (supercritical Hopf) 
- Activator-Inhibitors (subcritical Hopf) 
- Substrate-Depletion (subcritical Hopf) 

 
• Bifurcations 

Points where changes in the qualitative structure of the flow changes as 
parameters are varied. Bifurcations points are the parameters values where 
these abrupt changes in dynamics take place (e.g. when a fixed point is 
destroyed) 

- Saddle-Node Bifurcation 
It is the basic mechanism by which fixed points are created or 
destroyed. In these bifurcations, as parameters are varied, two fixed 
points move towards each other, collide and mutually annihilate.  

- Hopf Bifurcation 
Supercritical: when a stable spiral changes into an unstable spiral 
surrounded by a small, elliptical limit cycle. 
Subcritical: when an unstable cycle shrinks to zero amplitude and 
engulfs the origin, thus rendering it unstable. Then solutions that used 
to remain near the origin are now forced to jump into large amplitude 
oscillations. Because of these large amplitude jumps, these types of 
bifurcations are more dramatic and dangerous than super in 
engineering. However, in biology they enable the creation of activator-
inhibitor and substrate-depletion types of oscillations.  

- Pitchfork Bifurcation 
reversible transition, symmetry breaking event 
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Emergence – Prof. Mark Isalan 
 
Emergence and Gene Expression 
 
Attractors are stable genetic programs: 
 

- Fixed points (neg feedback, thermostat) 
- Limit cycles (neg feedback with delay, e.g. oscillators) 
- Bistability (thresholded, e.g. lac operon) 

 
Network topology can define systems attractors (Rene-Thomas Conjecture). 
However, topology is not everything. The parameters matter. The same network 
architecture can give rise to two completely different qualitative behaviours (e.g. 
repressilator). 
 

• The Repressilator (Elowitz and Leibler, 2000) 
They built a three-node transcriptional repressor system to build an oscillating 
network in E. coli. An odd number of negative connections in a loop gives 
negative feedback. A delayed negative feedback leads to oscillations (even 
though a bit damped). The dynamics of this system depends on factors such 
as: 

1. Transcription rate 
2. Translation rate 
3. Decay rates of protein and mRNA 

 
Depending on parameters, two types of solutions are possible. 

1. System converges towards a stable steady state 
2. Steady state becomes unstable, leading to sustained limit-cycle 

oscillations. 
 

Oscillations are favoured by: 
1. Strong promoters 
2. Efficient RBS 
3. Tight repression (low leakiness) 
4. Cooperative repression 
5. Similar mRNA and protein degradation rates 

 
To address requirement 1 and 2, they used hybrid promoters (λ Pl promoters 
with lac and tet operator sequences) 
To bring protein degradation rate closer to that of mRNA, they added ssRNA 
–tag on 3’ end of mRNA coding for repressor protein (recognised by 
protease). So now protein has halftime of 4-20 min and mRNA has 2 min. 
They assembled circuit in bacteria and saw that timecourse of GFP 
florescence had a period of 150 min (longer than cell cycle). 
However, they found that entry into stationary phase causes the repressilator 
to halt, indicating that the network is coupled to the global regulation of cell 
growth.  
 
Parameters matter: 

1. Equal Promoter Strength: oscillations, limit cycle  
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2. Different Promoter Strength: narrow oscillations (like 
thermostat), pseudo-oscillator in phase portrait (collapses to a 
fixed point). 

 
• The Genetic Toggle Switch (Gardner, Cantor and Collins, 2000) 

The toggle switch is composed of two repressors and two constitutive 
promoters. Each promoter is inhibited by the repressor that is transcribed by 
the opposing promoter.  
The bistability arises from the mutually inhibitory arrangement of the repressor 
genes (that is equivalent of a positive feedback) and also from the cooperative 
repression of transcription. 
In the absence of inducers, 2 states are possible: one in which promoter 1 
transcribes repressor 2, and the other where promoter 2 transcribes repressor 
1.  
Switching is accomplished by transiently introducing an inducer of the 
currently active repressor. The inducer permits the opposing repressor to be 
maximally transcribed until it stably represses the originally active promoter. 
Induction by IPTG or aTC alters the dynamic balance between the competing 
promoters such that the toggle is pushed into a region of monostability. 
The transition from bistability to monostability occurs in a sharp and 
discontinuous fashion, due to the existence of a saddle-node bifurcation 
(when one of the stable steady states is annihilated by the unstable state.  
The stochastic nature of gene expression causes variability in the location of 
the switching threshold and thus blurs the bifurcation point. Near the 
bifurcation, this blurriness is realised as a bimodal distribution of cells.  
 

- Stable points attractors 
 
The toggle with initial state above the separatrix will settle to one stable 
state, whereas a toggle starting below will settle to the stable steady 
state below. The position depends on transient fluctuations. 
 
  

• Bistable Attractor Selection (Kashiwagi et al., 2006) 
Can cells choose the ‘right’ attractor via stochastic switching? 
They built a system based on toggle switch and added a fitness pressure to 
either state 1 or state 2. When cells are cultured in rich medium, they 
observed o monostable system. 
In order to tease out the attractors, they added nalidixic acid (growth inhibitor) 
and then they could see bistability (plots here to visualise).  
So turns out that cells can switch state and go to fit state after hours after 
changing medium. The system is not regulated (no signalling), yet it behaves 
as if there was signalling. Cells are picking the right attractor. Is this gene 
expression on demand? 
Under the fluorescence microscope they checked if cells were actively 
changing the attractors or if just the best fitted cells were surviving.  
They found that the response was not due to proliferation of fit cells but rather 
by stochastic switching. Individual cells can cross the separatrix and move to 
one side or another in the dynamical portrait. They described this using a 
stochastic model.  
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To achieve fitness-induced attractor selection, the model requires 4 postulates 
to be satisfied: 
 

1. There must be noise (η1, η2) 
2. Noise amplitude is independent of activity A (or at least does not 

vanish with decreasing activity A) 
3. Both S(A) and D(A) are increasing functions of activity A (in turn 

correlates to nutrient condition and growth rates) 
4. In inappropriate medium A decreases, whereas by expressing m1 

or m2 appropriately A increases  
 

So by increasing fitness by A, there is a positive feedback that increases more 
and more fitness.  

  
• Monostable Attractor Selection (Tsuru et al., 2011) 

Kashiwagi et al. (2006) and others gave experimental evidence of stochastic 
switching based only on a bistable genetic structure. Bistability allows the 
cells to stay at a stable state, either fit or unfit, so that the stochastically 
appearing fit state ca be stabilised without further random switching to the 
unfit state. Nevertheless, the universality of stochastic switching as an 
adaptation strategy remains open, as bistability is known to be a special case 
in native genetic structures.  
Monostable gene expression is much more common and does not rely on 
complex genetic networks. To achieve a population, shift from a non-adapted 
stable state to an adapted unstable state, a significant increase in fitness (e.g. 
growth rate) of the fit cells is necessary (as they new-born fit cells need to 
proliferate and conquer the population). Otherwise, the random switching will 
hide the adapted transitions that sometimes occur and would lead to an 
unchanged population of the stable non-adapted state. Therefore, in contrast 
to a bistable network, the final adapted state in a monostable system is not 
determined a priori by the genetic architecture but is determined by the 
cellular response.  
To answer this question, they deleted the hisC gene from the His operon and 
placed it under the control of the very orthogonal PtetA promoter in an 
engineered gene circuit in another chromosomal locus.  
As a result, the native transcriptional regulation of the His operon and only 
stochastic switching of the engineered hisC monostable circuit can provide 
cells a chance of survival from histidine starvation. 
They observed stochastic switching-mediated adaptation at both population 
and microcolony level.  
In conclusion, the stochasticity of the rewired gene itself is insufficient to reach 
an adapted state, but the coordinated reorganization of global gene 
expression (quantified by transcriptomics) is essential. These results indicate 
a certain level of universal discipline during stochastic adaptation, which is 
represented by cellular plasticity in rewired cells. 
 
Essentially here there is an implicit attractor from a global fitness relationship. 
We need to move away from the mechanistic concept of molecule 
concentrations as only attractors but also global relationships such as fitness 
can be attractor if we want to understand the output of biological systems. 
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• Growth Laws (Klumpp and Hwa, 2014) 

 
Bacterial growth provides a model system for studying the coupling between 
individual genetic circuits and the global state of the cell. For example, gene 
expression requires ribosomes and RNA polymerases, whose concentrations 
and availability depends on the growth state of the cell. These observations 
actually point towards the limitations of the analogies between genetic and 
electronic circuits and metaphors that describe the host cell as a chassis, onto 
where the circuit is mounted and orthogonal… 
Changes in gene expression occur in conjunction with adaptation of the 
physiology of the cell as a whole. Some growth rate-dependent parameters: 
gene copy number, RNAP and ribosome concentration, mRNA lifetime, 
dilution by growth, cell volume. 
 
Passive Effect due to Growth 
Simplest case of growth-rate dependence is a gene, whose product is neutral 
and in low abundant (passive effect). Constitutively expressed gene can be 
used to separate growth-rate dependencies from effects of gene regulation: 

1. Constitutive expression in nutrient-modulated growth: 
If a gene product is neutral to fitness and in low abundance, as growth 
rate increases, protein concentration decreases linearly as growth rate 
increases (because it gets diluted). 

2. Constitutive expression in translation-modulated growth 
If gene product provides a fitness benefit, as growth rate increases, the 
protein concentration increases linearly (cellular parameters like 
transcription rate and gene copy number increase at faster growth). 

  
Growth Feedback 
If the product of a gene has a (positive or negative) effect on growth, growth 
provides a feedback mechanism for the expression of that gene. 
  

1. Genes with toxic product (nutrient-like growth modulation) 
Constitutive expression of a toxic protein in nutrient-limited growth 
results in positive feedback. An increase in the concentration of the 
toxic protein leads to a reduction in growth rate, which in turn results in 
a further increase of the toxin concentration (provided that the toxin’s 
effect modulates growth in similar fashion as nutrient depletion). 
Bistability arises if positive feedback is sufficiently cooperative and is 
reflected in bimodal distributions of gene expression levels. The two-
subpopulations also exhibit different growth rates. Such feedback may 
for example be induced by expression of chromosomal toxin-antitoxin 
systems (the coexistence of slowly and rapidly-growing cells is indeed 
observed in antibiotic resistance). 
 

2. Constitutively expressed resistance genes (translation-modulated 
growth) 
Increased expression of antibiotic resistance gene in growth modulated 
by translation-targeting antibiotic reduces the antibiotic level in the cell, 
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thus enhancing growth, which in turn increases the concentration of the 
gene product. 
 

 
• Growth Bistability and Ohm’s Law 

 
Emergence and Pattern Formation 
 
Alan Turing in 1951 proposed that a system of chemical substances (morphogens) 
reacting together and diffusing can develop from homogenous to a pattern/structure 
due to an instability of the homogeneous equilibrium (triggered off by stochastic 
disturbances). 
Interestingly, TP can generate self-organised, complex, repetitive patterns of gene 
expression. For this reason, they are regarded as the driving morphogenetic 
patterning mechanism in many biological systems.  
 

• Turing RD Model 
Alan Turing considered a system composed of a ring of cells each in contact 
with its neighbours, where two morphogens react and diffuse as described by 
the differential equations: 

Reactions: 

dX/dt = 5X – 6Y + 1 

dY/dt = 6X – 7Y + 1 

Diffusions: 

δX/δt = 5X – 6Y + 1 + dx∇2X 

δY/δt = 6X – 7Y + 1 + dy∇2Y 

The system was supposed to be initially in a stable homogeneous condition, 
but disturbed slightly from this state by some influences unspecified, such as 
Brownian movement or the effects of neighbouring structures or slight 
irregularities of form. This had the effect to bring the system from the stable 
state to an unstable one (Turing instability) 

After the lapse of a certain period of time from the beginning of instability, a 
pattern of morphogen concentrations appears which can best be described in 
terms of 'waves'. There are six types of possibility (waves) which may arise: 

1. Uniform, stationary 
2. Uniform, oscillating  
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3. Stationary with very short wavelengths 
4. Oscillatory with very short wavelengths 
5. Oscillatory with finite wavelengths 
6. Stationary with finite wavelength 

Type 6 waves are the most interesting and observed in biological world (now 
called Turing Patterns!).  

• Gierer-Meinhardt RD Model 
 
In 1972, they proposed a theory of biological pattern formation in which 
concentration maxima of pattern forming substances are generated through 
local self- enhancement in conjunction with long range inhibition. Local-
Activation-Long-range-Inhibition (LALI). 

In their networks, the activator self-activates and activates his inhibitor, 
resulting in lateral inhibition. This network (like Turing’s) is initiated by noise 
(e.g. does not need maternal info), it is thus self-organising and self-repairing. 
For instance, if the activated region is removed, the inhibitor-producing region 
is also removed. After the decay of the remnant inhibitor, a new activation 
sets in by autocatalysis. The inhibitor production also resumes, ensuring that 
the newly emerging activated region assumes the correct profile. Gradients, 
symmetrical arrangements and periodic distributions can be generated in this 
way. The maxima can have a spot- or a stripe-like shapes. 

• Pillars and Paradoxes of Turing Patterns 
 

The four pillars of TP: 
1. Genetic network 
2. Differential diffusion* (even though this is arguable, see Marcon et al., 

2016) 
3. Initial noisy expression (stochastic start) 
4. Final patterning 

 
• Robustness of Turing Patterns 

Robustness corresponds to the probability of randomly picking a pattern-
forming parameter. 
Turing Patterns operate over narrow parameters range. For example, the GM 
model is very parameter sensitive (e.g. you need very high differential 
diffusivity) How can evolution discover/pick right parameters? 
Using a mode that employs same promoters, you can use a Hill function with 
coopertivity (in the lab you can use HGF as X and a truncated version of HGF 
as Y). Diambra et al. (2014) applied stability analysis on such a model and 
discovered that increasing the cooperativity in the reaction function (that is 
making it more non-linear by increasing Hill coefficients) the parameter space 
increases. So greater steepness increases parameter space and even 
reduces the requirement for differential diffusion between activator and 
inhibitor  
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• Networks Atlas Approaches 

 
How to find networks that can give rise to Turing Instabilities? 

1. Identify the stable steady states of a given system of differential 
equations (consider stability of non-spatial system) 

2. Study their dispersion relation (dependency of the real part of the 
largest eigenvalue of the Jacobian matrix of the system on the 
wavenumber q) 

3. Add spatial diffusion: is it possible that a deviation from steady state 
does not decay into homogeneous steady state but become amplified 
(that is if eigenvalues become positive)? If yes, you get a Turing 
Pattern 
 

Using a similar algorithm, Sholes et al. (2018) described two types of Turing 
instabilities: 

1. Turing I: patterns with finite wavelength (for q⇾+∞, Re(λ)<0) 
2. Turing II: patterns with infinite wavelength (for q⇾+∞, Re(λ) +∞) 

 
 

(Marcon et al., 2016) showed using stability analysis that in the presence of 
cell-autonomous factors (immobile), networks can form a pattern with equally 
diffusing signals. In particular, using their software RDnet, they described 
three types of networks: 
 
Type I: only 2 mobile nodes, need differential diffusivity (the classic) 
Type II: 2 mobile nodes, one immobile node, allows equal diffusivity 
Type III: 2 mobile nodes, one immobile node, unconstrained diffusivity. 
 
The robustness analysis of the networks shows that for unconstrained values 
of diffusivity, type III networks are more robust to parameters change. 
However, when diffusion ratios are fixed to experimentally measured values 
for Lefty and Nodal, type II networks are more robust to biologically relevant 
parameters. In particular, they say that Nodal and Lefty is a type II network, 
where Nodal activates Lefty indirectly via the immobile Smad receptor. This 
means that Nodal and Lefty do not necessarily need to have differential 
diffusivities to form a pattern but the combination of differential diffusivity and 
clearance rate constants increase the robustness (of Type II systems). 

  
Importantly, Type III networks form patterns independently of specific diffusion 
rates; they have never been described before and challenge models of short-
range activation and long-range inhibition that dominated most of 
developmental and theoretical biology for decades. 

 
 
Modelling Plant Development  - Dr. Giovanni Sena 
 
Modelling Auxin Flux in Roots 
 

• Auxin Distribution in Roots 
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Auxin regulates almost every aspect of plant growth and development. Its 
intracellular concentration is controlled by biosynthesis and degradation. In addition, 
there is an “auxin pool” that consists of the conjugates with sugars, amino acids, and 
peptides. Some of the conjugates reversely release auxin, enabling alternative 
methods to regulate auxin concentrations. Auxin concentrations are also affected by 
transport. Besides the long distance delivery through the phloem, auxin is 
transported across the cell by influx and efflux carriers, from the shoot to root with 
maximum concentration at the root tip. At the root tip, the auxin flow reverses, and 
shootward auxin transport occurs. An auxin gradient formed this way is 
indispensable for proper development, maintenance of the meristem, and cell 
identity. The formation of root hairs is auxin-dependent. Auxin controls not only the 
initiation of root hairs but also regulates their elongation. In Arabidopsis thaliana, 
auxin accumulates in atrichoblasts and it is supplied to trichoblasts.  

The PIN proteins are secondary transporters acting in the efflux of the plant signal 
molecule auxin from cells. They are asymmetrically localized within cells and their 
polarity determines the directionality of intercellular auxin flow. PIN genes are found 
exclusively in the genomes of multicellular plants and play an important role in 
regulating asymmetric auxin distribution in multiple developmental processes 
The activity of PIN proteins is regulated at multiple levels, including transcription, 
protein stability, subcellular localization and transport activity. Different endogenous 
and environmental signals can modulate PIN activity and thus modulate auxin-
distribution-dependent development. A large group of PIN proteins, including the 
most ancient members known from mosses, localize to the endoplasmic reticulum 
and they regulate the subcellular compartmentalization of auxin and thus auxin 
metabolism. 

Polar auxin transport (PAT) is sufficient to generate differential intercellular auxin 
gradients that guide root growth. In vertically orientated roots, root-ward auxin 
transport is thought to provide equal auxin gradients on all sides of the root. 
However, in horizontally orientated roots, auxin is redirected and transported more 
efficiently at the lower side, resulting in an unequal auxin distribution, and thus a 
steeper auxin gradient at the lower side. This is thought to inhibit cell elongation at 
the lower side of the root, resulting in downward growth of roots, although underlying 
mechanism are far from being understood.  

PLETHORA (PLT) genes encode auxin-inducible transcription factors expressed in 
roots, which have been shown to be essential for determining differentiation in a 
graded manner. PLT protein levels correlate with the auxin response gradient at the 
root. High levels of PLT activity are required for stem cell niche identity and 
maintenance, intermediate levels are essential for cell growth and proliferation in the 
meristem zone (MZ), and low levels are needed for cell expansion in the elongation 
zone (EZ) and allow further cell differentiation in the differentiation zone (DZ). 
 
 

• The source decay model 
Morphogen production at a localised source and overall decay. 
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The characteristic length of a morphogen gradient, λ, indicates the distance 
from the location of maximum concentration, C0, at which the concentration 
has fallen to C0/e (37%) of the maximum value. This can directly be related to 
the logarithmic slope of the gradient. 

This source-decay system which is determined by a linear decay is arguably 
the simplest gradient generating mechanism that is used in biological 
development.  

δC(x,t)/ δt =D∇C(x,t)- d×C (x,t). 

Boundary conditions: state that at x = 0 there is a source of morphogen 
responsible for a morphogen influx, J, while at x = L (the length of the system) 
the morphogen cannot leave the system.  

D δC(0,t)/ δx + J =0     

D δC(L,t)/ δx  =0 

The steady-state distribution of the morphogen concentration over space is 
(where λ = sqrt(D/d)): 

C(x) = Jλ /D(1-e^-L/ λ) * e^-x/ λ  

when the size of the system is much larger than the characteristic length, this 
can be approximated as: 

C = C0 e^-x/ λ  

 

Due to the very high diffusion coefficient of auxin and its low decay rate, the 
slope of the established morphogen gradient is extremely shallow. 
Characteristic length in Arabidopsis is 2.4 cm.  
Such a characteristic length is far too large to convey positional information to 
the root, because concentrations would vary only 4% over the most distal 1 
mm of the root tip, where differentiation into stem cell niche, MZ, EZ and DZ 
take place. This reveals how establishing an auxin gradient through diffusion 
and decay only is extremely unlikely.   

 
• The polarised transport model 

Directed transport of the morphogen into the direction of a ‘dead end’, where 
a maximum will be formed. Model studies in the early eighties have shown 
that a unidirectional transport mechanism could underlie the establishment of 
auxin maxima. These models predicted the existence of polarly localised 
auxin efflux facilitators, which only much later were experimentally found, i.e. 
the family of PIN proteins. Unidirectional transport is not only able to generate 
a maximum, but also a morphogen gradient. The most direct mathematical 
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way to derive the effects of unidirectional transport is to consider a single cell 
file containing n cells that transport auxin directly into their neighbouring cells 
in the downward direction (from cell n=0 to cell n=N) 
p = transport rate 
q = diffusion rate 

F0,1 = (p+q) C0 
F1,2 = (p+q) C1 

F1,0 = q C1 
F1,2 = q C2 

At equilibrium:  
F0,1 = F1,0 and F1,2 = F2,1 

In general, (after substituting identities) this results in: 
Cn = (p+q/q)n C0 

After rearrangements and adding characteristic length: 
Cn = (p+q/q)n C0 = C0e^n/ λ 

But in Arabidopsis, measures parameters p=19 μm/s; q=1 μm/s. It follows that 
concentrations would drop 20-fold with each cell (Cn / Cn-1 =20), the 
characteristic length λ being 1/ log ((p + q) /q) =0.33 cell length, or ≃ 5 μm. 
Thus, within such a cell file, auxin concentrations drop more than 19 orders of 
magnitude over the first 15 cells from the maximum. This limits the 
functionality of the auxin gradient to only very few cells close to the maximum, 
which plots the mathematically predicted auxin gradient using a vascular cell 
template to correct for cell lengths. The value of C0

 

is determined by assuming 
a total amount of auxin within the vascular bundle equal that used in the 
source-decay mechanism. This has strong consequences for the positional 
information over the root, but in an opposite way as was observed for the 
source-decay mechanism: here the gradient is far too steep, while previously 
it was too shallow.  

• The reflux loop model (Grieneisen et al., 2007) 
A combination of a downward and upward flux, linked to each other through a 
lateral flux, forming an ‘auxin capacitor’. 
Central assumption is that location of PIN proteins alone can describe polar 
auxin transport.  
A robust auxin gradient associated with the maximum, in combination with 
separable roles of auxin in cell division and cell expansion, is able to explain 
the formation, maintenance and growth of meristematic and elongation zones. 
Directional permeability (PINs) and diffusion can fully account for stable auxin 
maxima and gradients that can instruct morphogenesis.  

The stable concentration peak is accompanied by large auxin fluxes through 
the tissues; like a reversed fountain, the central flow down- wards connects to 
the upward flow in the epidermal tissue through a redistributing root cap. The 
auxin increase is due to reflux of the upward flow all along the meristem back 
into the central down- ward flow, which captures auxin within a flux-loop, 
causing an increase of the concentration maximum, until a steady state is 
reached. The overall PIN layout specifies the region of the maximum at the 
junction of the flows, which is positioned centrally just above the cap region. 
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The density of lateral PINs, both those in the border and epidermal files, are 
crucial for the reflux and are the most sensitive determinants for the auxin-
storage capacity of the root and the magnitude of the maximum  

Importantly, auxin equilibrates into the given profile solely as a result of the 
high auxin flows and PIN localizations. When all cells ubiquitously produce 
auxin, the same pattern is generated. Even when production is localized 
outside the auxin-maximum region, the pattern does not change. 

To study the dynamics of zonation, they assumed (simplifying) that higher 
auxin levels promote cell division, whereas cell elongation is correlated with 
lower auxin levels.  

Refining cellular model: To study the dynamics of zonation, they assumed 
(simplifying) that higher auxin levels promote cell division, whereas cell 
elongation is correlated with lower auxin levels. They mathematically 
implemented it 

Refining cellular model II: they tried to add the pot model to their refined 
model. Each pixel in the cell is given a value of sigma. The value of sigma 
depends on the position: intercellular matrix = 0, cell wall=1. It the pixel is on 
the interaction between cells the interaction is significant. Then they used a 
Hamiltonian that is the sum of the interactions, plus the sum of the distance 
to the target area of the cell saucer. The Hamiltonian evaluates The energy of 
the system, the further from the target area for a cell the more energy they 
contribute to the system. The value that calculates the interaction between 
cells represents the surface tension. The term that evaluates the difference of 
position from the target position represents the turgor pressure. The target 
position is located by hand, this scale is rough and artificial. The move of 
cells and their interactions costs energy the dynamics of the system.  

The dynamics proceed stochastically on the basis of a free energy 
minimization using a dynamic Monte Carlo simulation algorithm. To mimic 
pseudopod extensions and retractions of the cells, this algorithm randomly 
selects a lattice site (source site) and attempts to copy its index into a 
randomly chosen neighbouring site (target site). If this site belongs to a 
different bio- logical cell (i.e., if it has a different index), the algorithm checks 
the net energy changes associated with this move. While the index copying 
occurs in a deterministic manner for the case of energy decrease, it occurs 
stochastically with the following Boltzmann acceptance function for the case 
of energy increase: 

Hamiltonian energy: 

ℋ =	 $ 𝐽&',),&'*,)*
+,,-

+ $ 𝜆	(𝐴& −	𝐴345673(𝜎)):	
;<=>>?

&@A

 

𝐽&',),&'*,)* = 	 B
0	𝑖𝑓	𝜎FG = 𝜎FHGH	

𝑎 > 0		𝑖𝑓	𝜎FG ≠ 𝜎FHGH
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σij is a pixel on the lattice, part of σ  

𝜎 = 0 is apoplast (cell wall)  

𝜎=1...𝑁 is symplast (inside cell)  

J is surface energy between cells 

<nn> = all the possible pixel-pixel borders  

𝐴& = 𝐴𝑟𝑒𝑎	𝑐𝑒𝑙𝑙	𝜎	 

𝐴345673(𝜎) = 𝑡𝑦𝑝𝑖𝑐𝑎𝑙	𝑎𝑟𝑒𝑎	𝑜𝑓	𝑐𝑒𝑙𝑙	𝜎	(𝑒. 𝑔. 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑒𝑑	𝑐𝑒𝑙𝑙)	 

𝜆= Lagrange operator (>0), specifying the strength of the area constraint (cell 
sorting is sensitive to lattice discretization, here we used 1) 

First term of Hamiltonian gives surface tension (if cells are different it outputs a 
positive value, that is an energy penalty, consider a =1; second term gives turgor 
pressure (it is large -and always positive - the larger is the deviation between the 
actual area of the cell and its “typical” size). 

.  

Accept transition (𝜎F,G → 𝜎FH,GH) with statistical mechanics probability: 

p(𝜎F,G → 𝜎FH,GH) =B
1		𝑖𝑓	∆𝐻 ≤ −𝑌	

𝑒_∆`ab/de	𝑖𝑓	∆𝐻 > −𝑌	 

∆𝐻 = 𝐻4f375 −	𝐻g7fh57 

 Y = yield of the cell wall resisting deformation 

 K = Boltzmann constant 

T = simulation temperature that determines the magnitude of random 
biological fluctuations. A higher T causes large fluctuations allowing 
mesenchymal-like cell behaviours. For extremely high T (melting 
temperature), the cells tend to disintegrate as the system becomes dominated 
by random fluctuations.  

 
• The reflective flow model  

 
Assumptions 
 

- All cells are equal functionally, in size and in shape 
- Auxin flows from the shoot, is degraded in cells, diffuses, is actively transported by 

PINs 
- We only consider PIN1, localised at one cell side 
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- It has been shown that auxin controls expression of PINs:  
o Normal auxin concentrations activate transcription of PINs genes (positive 

feedback) .  
o Very high auxin concentrations lead to degradation of PINs (as a negative 

feedback). 
- There are N number of cells. N is the source and 1 is the root tip. The flow goes from 

N to 1, due to active PIN transport. 

Demonstrations 
- Under these assumptions there is a formation of an auxin maximum  
- Auxin maximum is maintained during early root development 
- Demonstrate changes in auxin distribution in root tip cut, root exposure to inhibitors 

of PINs and treatment of root with exogenous auxin.  

Equations 
 

1. Rate of Auxin flux into the cell 
𝑉j = 	𝛼 

 𝛼 = 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	𝑜𝑓	𝑎𝑢𝑥𝑖𝑛	𝑓𝑙𝑢𝑥	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑠ℎ𝑜𝑜𝑡 
 

2. Auxin degradation 
𝑉q(𝑎) = 	𝐾q𝑎 

 
 𝑎 = 𝑎𝑢𝑥𝑖𝑛	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑	𝑡𝑜	𝑓𝑙𝑢𝑥) 
 𝐾q = 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 

3. Auxin diffusion 
𝑉qFff(𝑎) = 𝐷𝑎	 

 𝐷 = 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 

4. Active auxin transport 
𝑉4(𝑎, 𝑃𝐼𝑁) = 	𝐾v𝑎	𝑃𝐼𝑁 

 
𝐾v = 𝑎𝑐𝑡𝑖𝑣𝑒	𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡	𝑟𝑎𝑡𝑒	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
𝑃𝐼𝑁	 = 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑃𝐼𝑁1	𝑝𝑟𝑜𝑡𝑒𝑖𝑛 
 

5. Auxin-induced PIN synthesis (Hill function), it is zero at [Auxin]=0 and then increases 
monotonically 

𝑉x,yz;(𝑎) = 	𝑘A
( 𝑎𝑞A

)}~

1 + ( 𝑎𝑞:
)}�

 

 𝑘A = 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠	𝑟𝑎𝑡𝑒	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 𝑞A = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	𝑓𝑜𝑟	𝑎𝑢𝑥𝑖𝑛 − 𝑖𝑛𝑑𝑢𝑐𝑒𝑑	𝑃𝐼𝑁	𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 
 𝑞: = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	𝑓𝑜𝑟	𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑎𝑢𝑥𝑖𝑛 − 𝑖𝑛𝑑𝑢𝑐𝑒𝑑	𝑃𝐼𝑁	𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 
 ℎA,: = 𝐻𝑖𝑙𝑙	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 
  

6. Rate of PIN degradation 
 

𝑉q,yz;(𝑎, 𝑃𝐼𝑁) = 	𝑘:𝑃𝐼𝑁(1 + (
4
��
)}�) 

 
 𝑘: = 𝑏𝑎𝑠𝑎𝑙	𝑃𝐼𝑁	𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 𝑞� = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	𝑓𝑜𝑟	𝑎𝑢𝑥𝑖𝑛 − 𝑖𝑛𝑑𝑢𝑐𝑒𝑑	𝑃𝐼𝑁	𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 
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1-D Model 
 
The one-dimensional (1D) model describes auxin distribution in a linear array of cells 
located along the central root axis  

N = 1 à last cell of columella root cap (root tip) 
Then Cells are from 2 to N 
Cell = N à cell at the shoot-to-root junction 
The model is identical for all the cells, except cell N=1 and Cell N, which have 
boundary conditions. For cell 1, passive diffusion is necessarily defined only to cell 2 
due to the physical boundary conditions - there being no adjacent cell in the other 
direction. For cell N the boundary condition is that the net effect of active transport 
and passive diffusion is defined as occurring in only one direction: from the 
unmodeled shoot toward the root tip, modeled with equation 1.  

Auxin from the shoot first enters the Nth cell and then spreads through the linear 
array of cells by diffusion and active transport.  

For cell 1 (root tip): 

𝑑𝑎A
𝑑𝑡 = 𝐷(𝑎: − 𝑎A) +	𝐾v𝑎:𝑃𝐼𝑁A −	𝐾q𝑎A 

𝑑𝑃𝐼𝑁A
𝑑𝑡 =

𝑘A(
𝑎A
𝑞A
)}~

(1 + (𝑎A𝑞A
)}~) −	𝑘:𝑃𝐼𝑁A(1 + (

𝑎A
𝑞�
)}�)

 

For root cells: 

𝑑𝑎F
𝑑𝑡 = 𝐷(𝑎FaA +	𝑎F_A − 2𝑎F) +	𝐾v(𝑎FaA𝑃𝐼𝑁FaA −	𝑎F𝑃𝐼𝑁F) −	𝐾q𝑎F 

𝑑𝑃𝐼𝑁F
𝑑𝑡 =

𝑘A(
𝑎F
𝑞A
)}~

(1 + (𝑎F𝑞:
)}~) −	𝑘:𝑃𝐼𝑁F(1 + (

𝑎F
𝑞�
)}�)

 

For cell N (junction): 

𝑑𝑎;
𝑑𝑡 = 𝛼 + 	𝐷(𝑎;_A − 𝑎;) −	𝐾v𝑎;𝑃𝐼𝑁; −	𝐾q𝑎; 

𝑑𝑃𝐼𝑁;
𝑑𝑡 =

𝑘A(
𝑎;
𝑞A
)}~

(1 + (𝑎;𝑞:
)}~) −	𝑘:𝑃𝐼𝑁;(1 + (

𝑎;
𝑞�
)}�)

 

 
Results 
There is a presence of an auxin maximum at the root cap.  
There is also a gradient. Mechanism of the gradient: 
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- In cells with low auxin concentration, the PIN expression in enhanced. This results in 
rapid auxin accumulation at the tip (N=1).  

- High amount of auxin diffuses to cell 2. Maxima is now found in cell2. High 
concentrations of auxin in cell2, inhibit expression of PINs. This leads to a decrease 
of active transport to cell 1 and therefore auxin diffuses to cell 3. 

- The maxima shift away from the end of the root until the reflected auxin flow 
becomes balanced.  

Advantage over reflux-loop: 
- Only one anatomical element needs to be present for the reflected flow mechanism: 

cells with polarized PIN protein localization, regulated by auxin.  
- Sometimes plants that have not developed or where the structure has been disrupted 

do not have a root tip (with specific PINs and cell shape/size for the tip). Reflected 
flow model doesn’t need that. Reflux-loop does to close the loop of auxin.   

 
• Comparison and discussion 

 
Recently the reflux loop and reflective flow models were combined in a dual-
mechanism model that could capture the benefits of both systems. To 
introduce the reverse fountain PIN2 and PIN3 were included into the reflective 
flow model and localised in the same manner as the model in Grieneisen et 
al. (2007); however, the levels of these proteins were controlled by auxin. This 
dual-mechanism model was able to simulate the realistic regeneration of the 
root apical meristem upon decapitation (previously seen in the reflective flow 
model but not the reflux loop model). When a basal rate of auxin synthesis 
was included, this was able to maintain an auxin maximum at the root apex 
when the shoot was removed. 

However, maintaining an auxin maximum at the quiescent centre (QC) 
position is unlikely to be the only requirement for maintaining root growth. 
Growth is controlled by maintaining the rate of cell division in the meristematic 
zone (MZ) of the root above QC, cell elongation in the elongation zone (EZ) 
and above this, cell differentiation in the differentiation zone (DZ). The activity 
of these domains are controlled by the level of the PLETHORA (PLT) family of 
genes, which are believed to be controlled mainly through a gradient of auxin.  

Now the question is: does auxin produce a well enough defined gradient to 
define these zonations within the root?  

It was found that only the reflux loop model was able to form an exponentially 
increasing auxin gradient that spanned the entire MZ and part of the EZ; the 
auxin gradient was much too shallow with the source-decay mechanism, or 
much too steep with the uni-directional transport mechanism. 

 

 
 
 
 


